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1 The Aggregation Bias in BXZ/LWZ and Alternative Estimation

Procedure

Equation (21) in the main draft establishes an exact relationship between a firm’s observed valuation
ratio and the model-implied valuation ratio. As explained in the draft, we perform the estimation
at the portfolio-level as in Belo, Xue, and Zhang (2013) (henceforth BXZ), which in turn follow the
original approach in Liu, Whited, and Zhang (2009) (henceforth LWZ). Unlike LWZ/BXZ, however,
we estimate the model parameters by targeting cross-sectional portfolio-level moments that do not
require aggregating the data to construct a portfolio-level aggregate valuation ratio. Here, we discuss
in more detail why we modify the estimation procedure relative to BXZ/LWZ, and show that our

estimation procedure allow us to recover the fundamental firm-level structural parameters.

Aggregation in LWZ/BXZ To understand the need for our estimation method, it is useful
to revisit the aggregation procedure in LWZ/BXZ.! Following the approach in LWZ/BXZ, one
would estimate the valuation equation at the portfolio-level by first computing the portfolio-level
characteristics (e.g., the portfolio-level investment rates), and then plugging these characteristics
directly in the valuation equation (21) to obtain the observed and the model-implied valuation

ratios. Specifically, in year ¢, the portfolio j investment rate in physical capital is computed as

5wk,
L= =2 e Portfolio j 1
Kji o 32 Kjig ’ W

which is then substituted in equation (17) to obtain the portfolio-level shadow price of the physical

capital stock. Similarly, the portfolio level observed valuation ratio and capital stocks are given by

> (Pit + Bitt1)
Zz’ At
K = ZKMJ , @ € Portfolio j.
i

VRj =

!Liu, Whited, and Zhang (2009) estimate the model predicted investment returns rather than valuation ratios using
portfolio-level aggregated data. The two are closely related because, to a first order approximation, the investment
return is the valuation equation in first differences.
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The estimation would then proceed to estimate the parameter values by the Generalized Method
of Moments (GMM) under the identification assumption that the model errors, computed as the
difference between the portfolio-level aggregated observed and model-implied valuation ratios, are
on average zero.

The LWZ/BXZ approach provides a powerful framework for identifying robust links between
valuation ratios/stock returns and portfolio-level characteristics. In addition, this approach averages
out the noise in firm-level data in a convenient and elegant manner. Unfortunately, the aggregation
procedure in the LWZ/BXZ approach complicates the interpretation of the parameter estimates
as we will show with model-implied data below, because it is subject to an aggregation bias.
Specifically, by using the portfolio-level characteristics computed as in equation (1) to construct
the shadow price of the capital input in equations (17) of the main draft, the procedure does not
guarantee the recovery of the true firm-level structural parameters because the shadow prices of the

capital inputs are, in general, nonlinear functions of the firm characteristics.

Our Alternative Estimation Procedure To recover the firm-level structural parameters we
thus modify the econometric approach proposed in LWZ/BXZ. As noted, in theory, any moment
of the observed firm-level valuation ratios in equation (21) should be equal to any corresponding
moments of the model-implied firm-level valuation ratios. Thus, we target cross-sectional portfolio-
level moments that do not require aggregating the data to construct a portfolio-level aggregate
valuation ratio, hence avoiding the aggregation bias. Specifically, in each year, we compute the
portfolio-level valuation ratio by taking the cross-sectional equal-weighted mean of the firm-level
observed and model-implied valuation ratios, which we refer to as cross-sectional mean estimation.

We perform the estimation of the valuation equation (17) under the standard assumption that

the portfolio-level valuation ratio moments are observed with error by the econometrician:
ViRjt = ﬁjt (@) + Ejt, (2)

where VR;; (©) denotes the model-implied portfolio-level moment of the cross-section of firm-level
valuation ratios for the firms in portfolio j at time ¢, © represents the vector of structural parameters,

ie. © =1[0p,0r,0k,05], and e captures the error in the portfolio-level moments. Based on equation
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(2), we estimate the model parameters by least squares (LS), that is, we minimize the distance

between the portfolio-level observed and model-implied valuation ratios moments:

T N
0= argm@inTlsz (ﬁjt _ﬁjt (@)>2.
t=1 j=1

Thus, unlike LWZ and BXZ, who estimate the model parameters by matching the time series
means of the observed and model-implied portfolio valuation ratios, the use of LS in our estimation
requires the model to match the realized time series of the observed cross sectional moments of the
valuation ratios as close as possible. While in the absence of noise in the data, the GMM estimation
is able to recover the true firm level parameters if one uses our aggregation procedure, we find that
the time series data provides additional power to pin down the parameters when we use noisy firm
level data.

To show the aggregation bias in LWZ/BXZ explicitly and how our procedure avoids this bias,
we consider a particular calibration of the adjustment costs function in the context of the one-
physical- capital input model.? We then use artificial data to investigate the ability of the two
estimation approaches to recover the underlying firm-level structural parameters. We document
that the parameter estimates using the aggregation procedure in LWZ do not have a structural
interpretation. In addition, we verify that our alternative portfolio-level estimation method proposed
in the main text allow us to recover the firm-level structural parameters.

For simplicity, we consider the one-physical-capital input model. To proceed, we generate data
from a model economy in which the assumptions of the baseline investment model hold (and hence
the firm-level observed and predicted (model-implied) valuation ratios are equal). But instead of
simulating data from a model economy, we use real data as follows. We construct the capital stock

process for each firm by using the law of motion:
Kit = (1= 0)Kit—1 + Lit. (3)

We use the firm-level physical capital investment data for I;; and the initial capital stock of the

?Belo, Deng, and Salomao 2019 provide a general analysis of the aggregation bias and other economic issues in
the context of empirical tests of investment-based models.



70

75

80

85

firm to be K and assume a depreciation of 10%. To generate (artificial) price data in this economy;,

we use the valuation equation implied by the neoclassical model, that is:

VRy = {1+ (1 Tt)aK?l}, @)

where VR;; = %’i in which Pj; is the market value of equity. Thus, by construction, the observed
and the model-implied valuation ratio are equal (that is, the assumptions of the model are satisfied).

The econometric exercise of interest here is then to investigate the extent to which the different
estimation approaches allow us to recover the structural parameters, which in our case is the
parameter 6 . To make the results more general, we consider two values of the slope adjustment
cost parameters = 10 or 40. The curvature is fixed at 2 (quadratic), as in the baseline specification
of the model in the main text. Given these parameters, we can generate a time series of (artificial)
valuation ratios in the model using equation (4).

To examine the role of the impact of portfolio-level aggregation of the firm characteristics using
the LWZ procedure, we first create 10 and 50 portfolios sorted on lagged investment. As in LWZ,
we construct the portfolio-level counterpart of the valuation ratio as follows. For each portfolio

j=1,...,10, or 50 , and in each period, we have:

>V P

VR = =i-" ;¢ Portfolio j 5
gt ZiVKZt J ( )
> T
Ii/Kjno1 = i . 6
it/ Kjt—1 SN Koy (6)

To estimate the model parameters we construct the model-implied predicted valuation ratio

ﬁjt as:
Iy

VRy=1+(1—1)0
jt +( Tt) K, .

which uses the portfolio-level investment rate computed as in equation (6). Following LWZ, we
estimate the model parameters (6) by the Generalized Method of Moments (GMM) using the
moment condition:

E VR~ VR =0, j =1,.,10 or 50. (7)
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We use the identity matrix as the weighting matrix. We label this method as GMM-XS. For
comparison with the estimation approach used here that matches the time series data (and to
establish that the conclusions here only depends on aggregation issues, and not on the estimation
method (GMM versus LS, or time-series versus cross-sectional moments, used), we also estimate

the parameters by minimizing the sum of squared residuals. That is, let
Ejt = VRjt — VRjt.

We then estimate the model parameters by minimizing the objective function: Zthl Zjvzl E?t . We
denote this method as LS-TS. For each estimation method, we report the parameter estimate of
the slope coefficient 6 (reported as é) for the two cases 6 = 10,or 40, together with the estimation
bias, computed as the percentage deviation of the estimated parameter value relative to the true
parameter value (bias= é%e).

Table 1, rows LWZ /BXZ, report the estimation results using the LWZ /BXZ aggregation method,
and rows Our-XSM, report the estimation results using the our cross-sectional equally weighted
mean method. The first panel reports the results using the 10 investment-rate (IK) portfolios, and
the second reports the results using 50 IK portfolios. The columns on the right report the results
using the GMM-XS estimation approach (that is, matching the time series average of the cross
section of the portfolios), while the columns on the left report the results using LS-TS estimation
approach (that is, matching the time series realization of each portfolio).

Table 1 reveals that, across all cases, the parameter estimates using the LWZ/BXZ aggregation
procedure differ from the true firm-level structural parameters, and hence do not have a structural
interpretation. In all cases considered here, the bias in the estimation ranges from -16.40% to -1.40%,
and is never zero. Also, the parameter estimates vary significantly across the number of portfolios
(10 vs. 50) and across the estimation procedures (GMM-XS vs LS-TS), which should not occur in
large samples if the estimation procedure is consistent, in which case the procedure should recover
the true underlying parameter values. Indeed, the variation of the parameter estimates across test
assets helps us understand why the parameter estimates reported in LWZ vary significantly across

different test assets used in the estimation. The bias occurs because of the aggregation issues in the



Table 1: Comparison of Estimation Methods: the Impact of Portfolio-Level
Aggregation

This table reports the estimates of the model parameters across different portfolio-level aggregation methods for the
one-physical-capital input model with curvature equal to 2, and the slope adjustment cost parameter represented by
6. We consider two values of true model parameters at the firm level: § = 10 or § = 40. For each method, 0 is
the estimated parameter, and bias is the percentage deviation of the estimated parameter value relative to the true
parameter value (bias= 0;‘9). In LWZ/BXZ the data is aggregated by first aggregating the firm characteristics to
obtain the portfolio-level predicted valuation ratio as described in this appendix. XSM is the equal-weighted cross
sectional mean aggregation method in which we compute the portfolio-level observed and predicted cross sectional
valuation ratio across all the firms in the portfolios in each year. The test assets are 10 and 50 investment rate
portfolios. Two estimation methods are used. In LS-TS the parameters are obtained by minimizing the sum of
squared portfolio-level residual (the difference between observed and model-implied valuation ratio) at the portfolio-
level. In GMM-XS the parameters are obtained by matching the average observed and predicted valuation ratio of
each portfolio (as in LWZ/BXZ).

LS-TS GMM-XS
True Value: 0 =10 0 =40 6 =10 0 =40
Estimate: 6 Bias (%) 6 Bias (%) 6 Bias (%) 6 Bias (%)

Estimation using 10 IK Portfolios
LWZ/BXZ 8.72 -12.8034.91 -12.73 836 -16.40 33.44 -16.40
Our-XSM  10.00 0.00 40.00 0.00 10.00 0.00 40.00 0.00

Estimation using 50 IK Portfolios
LWZ/BXZ 9.86 -1.40 3947  -1.32 9.73 -2.70 38.91 -2.73
Our-XSM  10.00 0.00 40.00 0.00 10.00 0.00 40.00 0.00




115

120

125

130

135

procedure. The non-linearities in the valuation ratio mean that the true portfolio-level valuation
ratio is different from the portfolio-level valuation ratio obtained by first aggregating each portfolio-
level characteristics (investment rate, etc.) separately, to construct the portfolio-level valuation
ratio counterparts.

Turning to the analysis of the performance of the alternative estimation procedure proposed
in the main text, namely the use of equal-weighted cross-sectional mean, Table 1 shows that this
procedure avoids the aggregation issues in LWZ/BXZ. In particular, the results in Table 1 show that
the alternative aggregation procedure is unbiased, thus allowing us to recover the true underlying
firm-level structural parameters. We also have done tests with the multiple capital input model and
find that, even with noise, the proposed estimation of the paper is able to recuperate the adjustment
costs parameters.

Naturally, with measurement error, the analysis becomes significantly more complicated. Since
measurement error in firm-level data is not directly observed, different assumptions about the
nature of the error may lead to different results. This does not necessarily invalidate the previous
analysis, however. The analysis here shows that, even without measurement error, the aggregation
procedure in LWZ /BXZ contaminates the parameter estimates and hence prevents them from having

a structural interpretation.

2 The Constant Returns to Scale Assumption of the Operating

Profit Function

Here we discuss the constant returns to scale (CRS) assumption of the operating profit function, and
provide theoretical and empirical support for this specification. This assumption greatly simplifies
the estimation of the model because it allows for a closed form solution of the equilibrium market
value of the firm.

Subsection 2.1 shows that a specification of the operating profit function that is homogeneous
of degree one (or, equivalently, CRS) in the capital inputs is consistent with a specification in which
the firm’s production technology exhibits decreasing returns to scale (DRS) in a subset of the inputs

and the firm has market power (faces a downward sloping demand curve) and optimally chooses
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output price to maximize profits. Subsection 2.2 uses applied economics methodology to estimate

the parameters of the production function.

2.1 Interpretation: Decreasing Returns to Scale and Market Power

Assume the firm faces the following downward-sloping demand curve:
1
P,=B!Qi,v>0and e < —1 (8)

where By is the firm’s stock of brand capital (which affects consumer’s willingness to pay (WTP) for
the good), P is the price of the good (chosen by the firm) and @ is the quantity demanded. The
parameters satisfy the constraints v > 0 (impact of brand capital on consumers’ WTP is positive)
and € < —1 is the demand elasticity, which is assumed to be less than minus one, that is, demand
is elastic. We are ruling out an inelastic demand because it is never optimal for a monopolist to
operate in the inelastic portion of the demand curve.

Now, assume the firm’s production function is given by:
Qt:XtEtO‘E,aE>OandozK+aE§1 (9)

where E; captures the variable (non quasi-fixed) inputs (for example, energy or other materials).
To save on notation, we bundled all the quasi-fixed capital inputs and the productivity level in the
variable X;. For example, if the only quasi-fixed input in the production function is physical capital,
we have:

Xy = ALK, ag > 0and ag +ap < 1. (10)

If we have labor or other inputs, we can just re-specify X; accordingly.
We can write the operating profit function as a function of the firm’s quasi-fixed capital inputs.

This is obtained by choosing the optimal level of the variable inputs that maximize the per period

10
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profits:

maXHt = PtQt - CtEt
Ey

s.t.(8) and (9)

where ¢; is the marginal cost of one unit of the variable inputs. Substituting equations (8) and (9)

in the objective function we have

1 1
maxll, = By xtiper(+e) _ g, (11)
t
The first order condition (FOC) w.r.t. to E; is:
1 1 1+1)-1
E<1+E> BthlJrsEtaE( v Ct (12)

To facilitate the algebra, multiplying both sides of the FOC (12) by E; and then re-arranging

the terms we obtain:
1 1+ .
E<1+€> BthJrs = Eig
Next, we substitute ¢;F; in the objective function (11) at the optimum, and obtain:
« 1 .
II; = (1—ag 1+g B/Q, © (13)

Note that we need to find the optimal level of the variable inputs. We can solve equation (12) for

Ef

E (14)

%
Il
—
Q
S|
—
==
+
=
=
2
>

Now, substitute equation (14) into equation (13) in Qf = X;E;“Fto get:

11
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where:

o (—as(+Y)  aoinn
aE(l—Q—%)

o (14 1)] 2 0D)

which is always a positive number. We can interpret this variable as the effective productivity level

of the firm in the operating profit function.
For the operating profit function to have CRS in the two quasi-fixed capital inputs (physical

capital and brand capital, K; and By, respectively) we need:

W(l—(m>+a1(<l+i> (1—%):1 (16)

Coefficient on B in ITy Coefficient on K in IIy

so that the optimized operating profit function II} is CRS in the two capital inputs.

Now recall that ¢ < —1 so that 0 < l—i—% < 1. Also, v >0, ag+axg <1 and ag > 0
and agx > 0. All we need to do is to find a combination of parameters that work to prove that
the CRS specification can be consistent with a production function that is DRS and the firm has
market power. Here, we list a series of numerical examples that illustrate the claim. For each
case, we specify a set of plausible elasticity, ¢, and share (in the production function, ax and apg)
parameters, and then solve for the required 7 that solves equation (16) (and the corresponding

coefficients on B and K in the optimized operating profit function):

Example #1: ¢ = =2, ag = 0.3, ap = 0.3:

v = 0.70 so that coef. on B = 0.82 and coef. on K = 0.18

12
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Example #2: ¢ = —10, ag = 0.3, ag = 0.3:

v = 0.46 so that coef. on B = 0.63 and coef. on K = 0.37

Example #3: ¢ = =2, ag = 0.7, ap = 0.1:

v = 0.60 so that coef. on B = 0.63 and coef. on K = 0.37

Example #4: ¢ = —100, ax = 0.5, ag = 0.1:

~v = 0.406 so that coef. on B = 0.45 and coef. on K = 0.55

Example #5: ¢ = =2, ag = 0.7, ap = 0.3:

v = 0.50 so that coef. on B = 0.59 and coef. on K = 0.41

All of these cases illustrate combinations of parameter values consistent with a case in which the
specification of the firm’s technology exhibits DRS in a subset of the inputs, the firm has market

power, and the resulting operating profit function exhibits CRS.

2.2 Operating Profit Function Estimation

Obtaining consistent estimates of production/operating profit function parameters is challenging
due to the simultaneity problem generated by the relationship between productivity and input
demands. When subject to productivity shocks, firms respond by expanding their level of output
and by demanding more inputs; negative shocks, on the other hand, lead to a decline in both
output and demand for inputs. The positive correlation between the observable input levels and the
unobservable productivity shocks is a source of bias in ordinary least squares (OLS) estimates. The
applied economics literature has proposed the use of control function approaches to overcome this

simultaneity problem. Olley and Pakes (1996) (henceforth OP) proposes a two-step approach that

13
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uses investment data to proxy for productivity.® One downside of their approach is that they assume
that labor inputs are non-dynamic and therefore inconsistent with costly adjustments. Ackerberg,
Caves, and Frazer (2015) (henceforth ACF) refines their approach and propose a methodology that
allows labor to be costly to adjust.

Here, we follow the methodologies by Olley and Pakes (1996) and Ackerberg, Caves, and Frazer
(2015) to estimate the parameters of a Cobb-Douglas operating profit function using all four inputs:
physical capital, labor, knowledge and brand capital.* We use both revenue (sales in Compustat)
and value added (sales-cogs in Compustat).

Table 2 shows the parameter estimates using both methodologies for all firms together and for
low and high skill firms separately. Overall, the coefficient estimates add up to a number very close
to one (see last row, highlighted in bold). This result confirms that the CRS assumption of the

operating profit function constitutes an empirically reasonable approximation.

3 Robustness Checks

To check the robustness of our main findings and, in particular, the importance of non-physical
capital inputs for firm value, we re-estimate the model for different data samples and across several
perturbations of the empirical procedures. First, we show how the results are impacted by assuming
alternative adjustment costs functions that allow for asymmetric costs or a curvature parameter
that is different from two (i.e., non-quadratic). Second, we show how the results change for different
test assets, an alternative estimation method and across different data samples. Specifically, we
estimate the model using: a larger number of portfolios, an alternative industry classification as
portfolios, firm-level data (as opposed to performing the estimation using portfolios), the Fuler
equation approach using firm-level data, the sub-sample of firms that were excluded from the main
sample due to missing (or always zero) R&D expenses data. Finally, we show the results from
additional robustness checks (which includes tests using an alternative measure of intangible capital

such as organization capital, following Eisfeldt and Papanikolaou 2013).

3Levinsohn and Petrin (2003)is another influential approach. Their approach requires materials data that we do
not observe.

“We use the stata module prodest which allows for both  methodologies. See
https://ideas.repec.org/c/boc/bocode/s458239.html.

14



20°T S6°0 S0'T 860 860 68°0 660 €60 90'T £6'0 $0°T $0°1
(0z°02) (2¢0) (86°01) (1€°9) (62°6) (Lz'1) (L99) (€6°2) (¢e01) (L6°0) (zzer) (10°9)
#£xL9T°0  62L00 £++08T°0 5441610 £++992°0  6LT°0 #3£7T°0 54402170 £++98T°0 €110 ++1GT°0  %44€0T°0
(zv'se) (¥7'2) (99°¢) (¢9°0) (Lvg) (29°1) (122) (0g'T) (1%°01) (z6'1) (69°2) (0¢z)
#++€L0°0  £4GEC°0  £x+G0S0°0 81T0°0 ++xG7T°0  €VT0 #+x9€L0°0  €980°0 ++x022°0  ©8T°0 #+0TE0°0  4€0¥0°0
(teer) (e1°¢) (e1°81) (€9°%) (12°%) (€0°2) (9g°¢) (0g'T) (61°9) (00°¢) (¥9°¥1) (e7'%)
***wm.ﬁ.o ***ﬁwﬂ.o ***@NH.O ***@HH.O ***ﬂmﬁ.o **HHM.O ***mwﬁ.o 0¢80°0 ***MNH.O **wﬂﬁ.o ***mmH.O ***ﬁﬂﬁ.o
(06°91) (96°€2) (¥S011) (62°02) (90°¢) (8¢'91) (vz'sv) (Le72) (12°01) (¢L9¢) (gc0L1)  (6%°¢9)
£35707° 0 545L6F°0  £%4069°0  £4%069°0 £35928°0 4450070  £x48C0°0  44%€6G°0 £4+98G°0 5540670  44%899°0  £x%199°0
i)y do ADV do A0V do i)y do A0V do A0V do

ﬁw@@ﬁnm::ﬁ\w mw—ﬁm Uv@@@:wd—ﬁ\r wwﬂmm U@—u@ﬁ:vﬂ~ﬁ> mw—ﬁm

oIS US1H [IB[S 407 SWaLg 11V

"uo13onpoId JO SPINSEIU PIPPR SL[RA PUR SO[es UO poseq ore soyewryso o], ‘Tesdes (37) pueiq pue (, 37) o8pojmousy ‘( ,37) [eotsdyd ‘(77) 1oqef 10§ (IDV)
(Q10g) 197zR1] pue ‘soae)) ‘S10qi{dy pue (JO) (9661) Soqrd Pue A9[[() Jo seiSo[opoyjeur 9y} Juisn sojeuwr)se Iojewrered worounj uononpoid smoys a[qe) Sy T,

soyewn)sy] IojoureIeJ 7 o[qR],

wng

mk

A

15



225

230

235

3.1 Alternative Adjustment Costs Functions

In the baseline model, we specify the adjustment costs function to be symmetric and quadratic. In
this section, we relax these assumptions and show that they have a small impact on the model fit
and on the conclusions from the model. In Section 3.1.1 we allow for asymmetric adjustment costs

and in Section 3.1.2 we freely estimate the curvature of the adjustment costs function .

3.1.1 Asymmetric Adjustment Costs

In the baseline model, we specify a symmetric adjustment costs function for parsimonious reasons
and to avoid parameter proliferation. This assumption may be at odds with some results in the large
investment and labor demand literature, however. For example, Abel and Eberly (1994) and Abel
and Eberly (1996) show that allowing for asymmetry in physical capital adjustment costs (e.g., due
to investment irreversibility) improves the ability of an otherwise standard neoclassical investment
model to explain investment dynamics. Thus, here we consider a more flexible adjustment costs

function where we allow the costs of adjusting each input to be different:

P I}?

_ 90 1; P90 H;
Cit = £ {exp (—UpK’ifz) =+ UPKL{Z — 1} Ki,t + é |:eXp (—UL th

4
it

) +vL ?: - 1} Wit Lit (17)

K 171;' B Efi

0 Iy it K 0 Iy I B
—|—U—§; [exp (—UPKZ%) —|—vng - 1} Kip + i [exp (—1)3 Kth —i—vBK—g - 1| Kj;.

This function is smooth and homogeneous of degree one, hence it satisfies the requirements for
the firm value decomposition result in Subsection 3.3. To help its interpretation, Figure 1 plots this
function for the one-capital input case. The parameter 6; is similar to the single parameter in the
baseline specification and controls the size of the adjustment costs of input . The novel parameter
here is v; which controls the degree of asymmetry of the function. When v; > 0, it is more costly to
disinvest (partial irreversibility) than it is to invest. When v; < 0, it is more costly to invest than
it is to desinvest. When v; — 0, the function converges to our standard quadratic adjustment cost
specification.> Thus, by estimating the parameter v;, we allow the data to uncover the importance
of asymmetric adjustment costs for our results. Note that, due to the way in which we calculate
investment in the intangible capital inputs, the gross investment rates of these inputs are never

negative. Thus, even though the asymmetry parameters for the intangible capital inputs can be

SUsing I"'Hopital’s rule, 313%1% [exp (—v%) + vk — 1] K=4 (%)2 K.

16
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Figure 1: Asymmetric Adjustment Costs Function

This figure shows the asymmetric adjustment costs function specification C' = % [exp (fv%) + v% — 1} K, using a
slope adjustment cost parameter § = 1, a capital stock of K = 1, with curvatures of v = —5 (solid) and v = 5
(dashed). When v > 0 it is more costly to desinvest than to invest (to capture irreversibility), and vice versa when
v < 0.

Inv. rate (%)

estimated, they should be interpreted with caution because the identification of the functional form
of the adjustment costs of these inputs is only based on the positive side of investment. Hence,
in what follows, we focus most of our discussion on the asymmetry parameters v for the physical
capital and labor inputs.

Table 3 reports the parameter estimates and fit of the model with asymmetric adjustment costs.®
The evidence of asymmetry for physical capital is not strong in our sample. In low-skill industries,
the asymmetry parameter is positive, vy = 0.21, consistent with some irreversibility of investment,
but in high-skill industries the parameter is negative, vg = —0.25. In both types of industries,
however, we cannot reject the hypothesis that this asymmetry parameter is zero, that is, that the

physical capital adjustment costs function is symmetric, as in the baseline specification. For labor,

5Note that the estimation using this adjustment cost specification can no longer be performed using linear OLS.
Here, minimizing the objective function in equation (23) in the main draft requires non linear least squares (NLLS)
estimation. We compute bootstrapped standard errors that are robust to cross-sectional and time-series correlation
using 20% of the sample with replacement. As shown by Cameron and Miller (2010) bootstrapping controls for the
fact that errors can be correlated across portfolios and within portfolios over time.

17



250

255

260

265

270

there is evidence of some degree of irreversibility in high-skill industries with vz, = 2.16 (and this
value is more than 4.3 standard errors from zero), but not in low-labor-skill industries with vy, = 1.19
(but we cannot reject the hypothesis that this parameter is zero). Thus, in high-skill industries, it
is more costly to decrease the labor force (i.e., fire workers) than it is to increase it.

Turning to the analysis of the impact on model fit, Table 3 shows that, by using the asymmetric
adjustment costs function specification, the time-series R? of the model increases by 2 percentage
points relative to the baseline quadratic adjustment cost specification, from 38% to 40%. The
improvement in high-skill industries is slightly larger. In high-skill industries, using the asymmetric
adjustment costs function specification, the time-series R? of the model increases by 6 percentage
points relative to the baseline quadratic adjustment cost specification, from 60% to 66%. This
improved fit comes mostly from the asymmetry in the labor adjustment costs discussed above.

Taken together, allowing for asymmetry in the adjustment costs function seems to have only a

small impact on the quality of the model fit in our sample, especially in low-gkill industries.

3.1.2 Flexible Curvature Adjustment Costs

In the benchmark specification, for parsimonious reasons, we fix the curvature of the adjustment
costs function to be equal to two and only estimate the slope adjustment cost parameter. As
a robustness check, in this appendix, we consider a more flexible adjustment costs specification
that allows for the joint estimation of curvature and slope. Specifically, we consider the following

functional form for the adjustment costs function:
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in which Wj; is the wage rate (which the firm takes as given), 0p,0r,0k,0p > 0 are the slope
adjustment costs parameters, and vp, vy, vk, vp > 1 are the curvature adjustment costs parameters.
Note that this specification reduces to the quadratic functional form we use in the benchmark model
when the curvature parameters are equal to two. The absolute value specification of the adjustment
costs function allows for negative investment rates and improves the stability of the estimation of the

curvature parameters.” This functional form generalizes the one-physical-capital input functional

"When the curvature parameters are greater than one, v; > 1, this function is continuous along its entire domain
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Table 3: Parameter Estimates and Model Fit with an Asymmetric Adjustment Cost Specification
This table reports the parameter estimates and measures of fit for the model with adjustment costs function that
allows for asymmetric costs. The estimation uses 40 portfolios sorted based on proxies of the lagged values of the
inputs (10 portfolios for each input). Op, 0, 6k and Op are, respectively, the physical capital, labor, knowledge
capital, and brand capital adjustment cost parameters. vp, vr, vk and vp are, respectively, the physical capital,
labor, knowledge capital and brand capital asymmetry adjustment cost parameters. s.e. stands for bootstrapped
standard errors. XS — R? is the cross-sectional R*, T'S — R? is the time-series R?, and m.a.c./V R is the mean
absolute valuation error scaled by the absolute value of the ratio. Model-implied input-shares (1) are computed at
the aggregate-level according. CX/Y is the ratio (in percent) of the implied input adjustment costs-to-sales ratio,
computed as the time series average of the cross sectional median of this value.The sample consists of firm-level
annual data from 1975 to 2016.
All Firms  Low Skill  High Skill

(M (2) 3)

Parameter estimates

Slope
0p 2.33 4.45 3.02
s.e. [1.32] [2.31] [1.42]
0r, 15.21 9.32 13.41
s.e. [1.54] [2.95] [1.28]
Ok 18.19 30.29 16.94
s.e. [1.87] [6.58] [1.70]
0p 1.42 29.17 0.45
s.e. [2.94] [5.86] [2.14]
Asymmetry
vp -0.37 0.21 -0.25
s.e. [0.28] [0.79] [0.28]
vy, 2.55 1.19 2.16
s.e. [0.56] [1.29] [0.50]
Vi 1.73 2.31 1.47
s.e. [0.57] [1.49] [0.51]
Vg -3.57 9.32 -4.96
s.e. [2.49] [2.15] [2.00]
Model fit
XS — R? 0.94 0.90 0.94
TS — R? 0.67 0.40 0.66
m.a.e./VR 0.20 0.31 0.20
Firm-value decomposition (in %)
A% : Physical capital 31.87 38.48 31.76
Al : Labor 20.97 13.81 19.04
X : Knowledge capital 39.28 22.29 43.93
A : Brand capital 7.88 25.42 5.27
Realized adjustment costs (in %)
CP/Y : Physical capital 1.46 1.44 2.13
CL/Y : Labor 19 7.58 2.98 7.58
CK/Y : Knowledge capital 12.41 3.21 15.74

CB/Y : Brand capital 0.31 2.56 0.11
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form specification used in BXZ to multiple inputs.® Finally, note that this functional form also
assumes symmetry across positive and negative adjustments.’
The adjustment costs function in equation (18) implies that the shadow prices of the capital

inputs are given by:

p vr—l P
a;, = 1+(1—-mn)0p |- sign (;) (19)
it i
I/L—l H
¢ . t
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We use the sign function to express the equilibrium shadow prices of each of the capital inputs in
a compact manner, that is, using one equation, instead of a piece-wise function. This is because,
given the absolute value specification, the signs associated with the investment and hiring rate terms
switch depending on whether the input-specific investment or hiring rate is positive or negative.

Using these shadow prices, as in the benchmark model, we can write the firm’s valuation ratio as:

K}/ Lit1 Kl K
VR = Q'P it+1 + Q'L [ + qK it+ + qB i+ . 23
‘ At M Aper T Ap T A (23)

The left-hand side (LHS) of equation (23) can be directly measured in the data from equity price
data and debt data (and measures of the capital stocks). The right hand side (RHS) of equation
(23) is the predicted valuation ratio from the model, ﬁit, which depends on the model parameters.

Table (4) columns (1) to (3) displays the estimated parameters for slope and curvature for the
model with three capital inputs and labor in the pooled sample (all firms), and for low- and high-

skill industries separately. Looking at the estimated curvature parameters, one can note that the

including at zero since the left and right derivatives at zero coincide. See also Kogan and Papanikolaou (2012) for a
similar specification in the context of a one-physical-capital input model.

8 Although not explicitly stated in their paper, BXZ also use an absolute value specification to deal with negative
investment rates observed in the data.

9Note that the estimation can no longer be performed using OLS. Therefore we use non-linear least squares (NLLS)
and then compute bootstrapped standard errors that are robust to cross-sectional and time-series correlation using
20% of the sample with replacement. As shown by Cameron and Miller (2010), bootstrapping controls for the fact
that errors can be correlated across portfolios and within portfolios over time.
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values are around two, empirically justifying the simplification used in the benchmark model. Note
also that, comparing the fit of this model with the quadratic version in Table 3 columns (1) to (3)
in the main draft, we can conclude that estimating the curvature does not significantly improve the
model fit. Table 4 columns (4) to (6) displays the estimated parameters for slope and curvature for
the model with only physical capital in the pooled sample (all firms), and for the low- and high-skill
industries separately. Comparing with the quadratic cost counterpart in Table 3 columns (4) to (5)
we see that allowing for curvature estimation also only marginally improves the fit of the model.
The last two panels in Table (4) report the input-share decomposition and adjustment costs
using the specification in equation (18) and the previous parameter estimates. Overall, the message
is quite similar to the one in the main draft, namely, that physical capital accounts for a relatively
small share of firm value, and that labor and intangible capital are important to properly decompose

the market value of the firm.

3.2 Alternative Test Assets, Estimation Method, and Samples

In the baseline estimation, we use 40 portfolios (10 portfolios for each of the 4 portfolio sorts) as
test assets. In this section we show how the selection of test assets (portfolios), estimation method
and sample affect the model fit and conclusions. For parsimonious reasons, we focus here on the
estimation results across all firms. In Section 3.2.1 we estimate the model using a larger number
of portfolios than in the baseline estimation. In Section 3.2.2, we consider an alternative industry
classification and a different sorting variable for the portfolios. In Section 3.2.3 we estimate the
model directly using firm-level data (as opposed to performing the estimation using portfolios)
and targeting the valuation ratio moment, as in the baseline estimation. Section 3.2.4 repeates the
previous estimation exercise also using firm-level data but now using the investment Euler equations
as the target moments instead of the valuation ratio (and hence, it does not use any asset price
data). Finally, in Section 3.2.5 we re-estimate a restricted version of the model without knowledge
capital using the sub-sample of firms that were excluded from the main sample due to missing (or

always zero) R&D expenses data.
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Table 4: Parameter Estimates with Flexible Curvature

This table reports estimation results and measures of fit for the model with the curvature estimation for the benchmark
model and also the one-physical capital input model. The estimation uses forty portfolios based on the lagged
investment /hiring (ten of each type of input). 6p, 61, Ox and 6p are respectively, the physical capital, labor,
knowledge capital and brand capital slope adjustment costs parameters. vp, vy, vk and vg are, respectively, the
physical capital, labor, knowledge capital and brand capital curvature adjustment costs parameters. s.e. stands for
bootstrapped standard errors. m.a.e./|V R| is the mean absolute valuation error scaled by the absolute value of the
ratio. The value that is attributed to each input () is presented in the third panel. The second panel report the
costs, where CX/Y is the ratio (in percent) of the implied input adjustment costs-to-sales ratio. The sample is annual
data from 1975 to 2016.

Baseline KP
All Low High All Low High
Firms  Skill Skill Firms Skill Skill
(1) (2) 3) (4) (5) (6)
Parameter Estimates
Slope
Op 2.88 3.40 3.11 28.37 17.35 29.13
5.€. [L.11]  [1.33]  [1.12] [0.88]  [1.62] [0.87]
0r, 10.16 4.89  10.73
s.e. [1.04] [1.34] [1.08]
(7% 9.12 12.44 9.26
s.e. [1.32] [5.43] [1.35]
0p 4.23 4.48 4.17
s.e. [3.66] [4.13] [4.14]
Curvature
vp 2.45 2.21 241 1.95 1.64 1.94
s.e. [0.16] [0.42] [0.17] [0.04] [0.08] [0.05]
vy, 1.97 1.42 2.09
5.e. [0.13]  [0.21] [0.14]
VK 1.68 1.65 1.7
5.e. [0.10] [0.28] [0.10]
vB 2.34 1.49 2.56
s.e. [0.43] [0.48] [0.44]
Model Fit
XS- R? 0.93 0.90 0.93 0.73 0.58 0.74
TS- R? 0.62 0.42 0.61 0.23 0.12 0.20
m.a.e/VR 0.22 0.31 0.22 0.32 0.37 0.33
Firm value decomposition - Aggregate (in %)
A% : Physical capital 31.06 34.71  30.01 100.00  100.00  100.00
al : Labor 20.95 22.08 18.43
% : Knowledge capital 39.93  20.96  45.5
AP : Brand capital 8.06 2224  6.06
Realized adjustment costs (in % of annual sales)

CP/Y : Physical capital 0.79 QQS 1.09 18.91 13.12 22.22
CL/Y : Labor 6.24 6.48 5.69

CK/Y : Knowledge capital 13.2 321  16.89
CB/Y : Brand capital 0.34 2.09 0.23
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3.2.1 Changing the Number of Portfolios

Here, we consider 80 portfolios (20 portfolios for each portfolio sort) as test assets, and investigate
the impact of changing the number of portfolios on the results. Table 5, column (2) reports the
estimation results using this larger number of portfolios as test assets. The point estimates appear
to be very similar in magnitude to the point estimates in the baseline estimation. As a result, the
model fit and model-implied firm-value decomposition are all quite similar to those obtained in the
baseline estimation of the model. This analysis suggests that the point estimates in the baseline

estimation are robust to a reasonable variation of the number of portfolios used in the estimation.

23



L8°TT 29°€e 86°1¢ 1891 2001 €8'8
€0ve 6L°LT L6 9¢'8¢ 87'8¢
8¥°0€ 0z'21 Sy 11 621 GC6T €G6°TT
€9'9G e1°0g LL'SE 86°0€ 88'1¢ 9€°0¢
(9 ur) uoTISOdUI0DP SNTRA-TLIT]
cz'0 - 79°0 0€°0 jwall &all
zL0 - e1'0 7e0 8G°0 19°0
76°0 - 9z°0 ¢9'0 76°0 76°0
15 [PPOIN
272l lee 1] [81°1] leg-¢] [27°T] 0z
L6°C ezel zT el 60°T1 0V AL
[18°0] [2¢1] e 1] [19°0] [22°0]
1€°6 09°L 91°cT z6°eT L¥el
[8%°0 [19°0l [22°0] [€0°T] [egol [69°0]
65'L 19'9 0€°G 869 S6°6 9z'11
[66°0] loz"0] [2€°0] [cL-0] [eL 0] [00°1]
¢9'c 61°C NS 99°Z dare 06T

S9IBUI}SO I9)tIRIe

pueaq : g1
agpamouy] = 1
Joqery : 1
[edtsdy g ;1
YA/ ovw
ed —SL

d —SX

"'

qp

"9°8

g

o'

Tp

9'8

g

(9)

()

¥)

(€)

(2)

(1)

SYUOWON suoryenbry SYTOWOTN SYTOWOTN SYUOWON SYTOWOTN
uoryenyes IaTng uoryenye) uoryenye) uoryenye) uoryenyes
SULI] (IY-UON  [PA9T-ULIL]  [PA9-ULIL{  SOLI)SNpuf LT SOT[0J3I0J ()R  ouleseq

"'9T0Z 0% GLET WOIJ ©Iep [eNUUR [9AS[-WLIY JO s)sisuod a[dwres oy [, swiy [[e jo ojdures a1} 10} pajiodax
oIe symsa1 oy J, "(sur] zpy uwoN) sindut o) se [eydes pueiq pue ‘roqef ‘Tejidesn reossAyd yym [ppowt e Juisn ‘eyep asuodxo (Y (019z sfemle 10) Sulssiua
yym sury jo ojdures oY) ul WOIJRWII)SO NIeuwryouaq oY) sjrodel (9) suwnjo)) ‘sjusuIon jo8Ie) oy} se suoljenby Io[ny juauIlsoAul 93 Juisn nq ([oAd -ULIL])
[PAS[-ULIY 07} J& Os[e UoIjRWIISe oY) Sururiolted Aq s)Nsal UoTRMII)SE o1} s)Iodal (¢) UWN[O)) “jusmIow Jo3Ie) oY) Se Oljel uoljenyes oY) Suisn pue ([9AST-ULIL])
[0A9] (-o1103710d j0u) -ULIY B9 Je UOIYRUIIYSS 9Y) Jururiojrad Aq s)msa1 wojeurr)se 9y syroder () uwnjoy) “(*puy A1) sorjojrrod o) st SILIISNPUT YOUdIL]-RuUIe] /T
Sursn symsax uoryewiyse oYy syrodax (¢) ummo)) *(sorjojrod (o8) syndur ay) Jo senjea padde] oY) Jo serxoid uo peseq poajios sorjojyrod (g JUISN SYNSEI UOIJRUIIISO
o1 syrodai (g) umnjo)) ‘(aurpeseg) sotjojrrod (f 3uisn jJelp urewr o) ul pajrodol sJ[Nsel UOIRUIISS oUIPse] 91} s310dol (T) UWN[O) "OIyel oY) JO oN[RA 2IN[OSq®
o1} £q PO[IS IOLIO UOIJRT[RA IN[OSCR WRSUL Y} SI 3 A/ 2D'W Pue ‘ 3 SOLIdS-OWIY OY) ST 3] — G J ‘Y [BUOI}IVS-SSOID OYY ST .3 — G "SSe[ 991U} [IIM SIOLIO
pIepue)s SO\ -AomoN I10J spue)s 'o's -siojourered §sod juoumysnipe odors ejides pueiq pue ‘Tejides o8peoimous ‘roqe ‘Teyrded reorsAyd oty ‘Apearjoodser ‘ore
gy pue ‘Mg ‘Tg ‘dg -seanpedoid [esurduro oarjeurs)fe ssoloe (1) sereys-jndul perjduri-[opowr pue ‘41j Jo SoINseoW ‘sojewnso Iojoureled o) syrodal a[qe) ST,

sojdureg pure ‘poTjoIN UOIIRMIIISH ‘S19SSY 1S9T, PATJRTLISIY :G 9[qe],

24



LT

069
0v'c

Gc'e GI'e 08T 99°0 6¥°0 reqiden puerq : /g0

L9 099 8T€ET v 0T G0°0T restden oFpapmousy ¢ £ /370
61T°€ €ee 6EV 1.6 97’9 T0qeT : X/T0D
4! 6V°C 8.1 V€1 060 reqrden eosfyd : £/d0

(9% ur) $1500 JuouI)SNIpe paziray

(9)

(¢) (¥) (¢) (2) (1)

SYTOUIOIN suoryenbry SYTOUIOIN SYUOUIOIN SYUOUIOIN SIUOUWIOT
uonyenyeA helutle| uoryenyeA uotyenyeA UOTIBTITBA UOTIBTI[BA
sy WON [ASTT-ULIT | [PAST-ULITA SoLnsupuy L1 SOT[oJI0d 08 oul[esey

-ordures pue ‘emposord

uorpewi)se ‘suoijedyoods [popowr sA1jRUIS)[R ) Aq parjduur $J500 jusm)snlpe pozipea o) syrodor pue ‘o[qe) snoraaid o) WOIJ s)NSI 9} syuswa[duIod 8[qe) STy ],

sojdwreg pue ‘poyYIoIN UOTIRWIISH ‘S}9SSY 1S9, QATYRUIS)Y I0J 8)800) Juaur)sn(py pojewnisy :9 o[qe],

25



325

330

335

340

345

3.2.2 Alternative Portfolio Sorts and Industry Classification

In the baseline analysis we estimate the model using portfolios sorted on proxies for the firms’ lagged
values of each input. In addition, we split the sample into low- and high-skill industries according
to the average share of high-skilled workers in each industry. Naturally, the model can be estimated
using other portfolio sorts, and also using other industry classifications.

To check the robustness of our main findings to both the portfolio sorting variable and the
industry classification, here we report the estimation results using two alternative procedures. In
the first procedure, we estimate the model parameters using 15-industry portfolios following the 17-
industry Fama and French industry classification (we exclude two industries due to data availability),
instead of sorting the portfolios on proxies for the firms’ lagged values of each input.'® The results
from this analysis allow us to check the robustness of the findings to the portfolio sorting variable(s).
Implicit in this analysis is the assumption that the adjustment costs technology is similar across
these industries (we estimate only one set of parameters for all firms). Thus, we also consider a
second alternative procedure in which we estimate the model parameters using the same sorting
variables of the baseline estimation but perform the estimation separately within each Fama and
French industry. The results from this analysis allow us to check the robustness of the findings to
the industry classification. To save space, given the large set of results obtained using this second
procedure, we discuss here a brief summary of the main results and report the complete analysis
using this procedure in Subsection 4.2 in this appendix. Further, we report only the input-shares
computed using the aggregate input-share measure.

Table 5, column (3) reports the estimation results using the 15-industry portfolios. The point

estimates are similar to those obtained in the baseline estimation. The only noticeable differences

'0We use the 17-industry classification posted on Kenneth French’s website. We exclude the industries 14-Utilities
and 16-Financial firms due to data availability and sample restrictions. We are left with the following fifteen
industries: 1-Food, 2-Mines (Mining and Minerals), 3—-0il (Oil and Petroleum Products), 4-Clths (Textiles, Apparel
& Footware), 5-Durbl (Consumer Durables), 6-Chems (Chemicals), 7-Cnsum (Drugs, Soap, Perfumes, Tobacco), 8-
Cnstr (Construction and Construction Materials), 9-Steel (Steel Works, etc.), 10-FabPr (Fabricated Products), 11—
Machn (Machinery and Business Equipment), 12—-Cars (Automobiles), 13-Trans (Transportation), 15-Rtail (Retail
Stores), 17-Other.
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are the slope coefficient on brand capital that is larger than in the baseline case (g = 11.09 here
versus fp = 3.24 in the baseline estimation), and the slope coefficient on labor that is smaller than
in the baseline case (01, = 6.98 here versus 07, = 11.26 in the baseline estimation). As a result, the
estimated share of brand capital for firm value is slightly higher here than in the baseline model
(up = 16.87 here versus pup = 8.83 in the baseline estimation), while the estimated share of labor
capital for firm value is slightly lower here than in the baseline model (pu; = 12.39 here versus
pur, = 8.83 in the baseline estimation). More important, the results confirm the importance of
the non-physical capital inputs for firm value. Similar to the baseline estimation, the non-physical
capital inputs account for roughly 70% of the firm’s market value.

The estimation of the model for the different Fama and French industries provides further
support for the importance of the non-physical capital inputs for firm value. In Subsection 4.2 in
this appendix we show that although the estimates of the adjustment costs parameters vary across
industries, the importance of the non-physical capital inputs persists. The average share of the non-
physical inputs ranges from a minimum of 19% in the industry classified as “other”, to a maximum
of 72% in the high-tech industry. In addition, the analysis of the input-shares in each industry and
over time, confirms that the decline in the share of physical capital and the corresponding increase
in the share of knowledge capital, also observed in the baseline estimation, also persists across the
Fama and French industries. Thus, the decline in the physical-capital share and the increase in the
knowledge capital share is not driven by changes in the industry composition in the U.S. economy,

but rather seems to be a trend in the overall economy.

3.2.3 Firm-level Estimation

We perform the baseline estimation using portfolio-level moments. Alternatively, we can estimate
equation (24) by ordinary least squares directly on firm-level data. The advantage of this latter
approach is that it does not require us to take a stand regarding a particular sorting variable to
create the portfolios. The disadvantage is that this approach is more sensitive to noise in the
firm-level data.

Table 5, column (4), reports the estimation results using firm-level data. As expected, the

parameter estimates differ somewhat from the baseline estimation. The main noticeable difference
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is the smaller estimate of the labor adjustment cost parameter, and the larger estimate of the brand
capital adjustment cost parameter. This suggests that the noise in the labor input may be more
severe than the noise in the other inputs. As a result, the estimated share of labor for firm value is
smaller here than in the baseline model, and the estimated share of brand capital for firm value is
larger here than in the baseline model.'!

More important, the estimation results using directly the firm-level data confirm the importance
of non-physical capital for firm value. Similar to the baseline estimation, the non-physical capital

inputs account for a substantial fraction, approximately 62% of firm value.

3.2.4 Alternative Estimation Method: Firm-Level Euler Equation Approach

Here we check the robustness of our main findings to the estimation method, in particular, estimating
the model parameters using the investment Euler equations as the target moments, instead of the
valuation ratios as in the baseline approach.

Rearranging the first order conditions with respect to investment and hiring leads to the following

four Investment-Euler equations (using the same notation as in the main draft):

Iy Yier1 . 0p [ T ? P P £
Egp @ 14+(1-7¢)0p %P =B (M1 |[(1 = 7e41) app—t5 (%P + 05141 + (1= 0541) (1 + (1 — 7e41)0p KP )

it it+1
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Eyp : (177'75)9[1 ( Zt) Wit = Et
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Lity1 2 \ Lit+1 Lit+1

Y; 0 [ H; 2 H;
(1 —Te41) (Oq il 7L ( lt“) Wits1 — Wit+1> +(1—- 5iLf,+1)(1 —T41)0L (Lﬂ) Wit+1:|:|

EKK : (I—Tt)

I
140k K1§+1

1 As implied by the model, we restrict the intercept to be zero in the regression analysis. This restriction also
prevents artificial improvement of the model fit. In unreported results (available upon request), we find that including
an intercept to the firm-level regression does not significantly improve the model fit.

2
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To make the labor Euler equation E, stationary, we divide both sides of the equation by current
wages W;;. To facilitate the estimation of the key adjustment cost parameters, we substitute in these
equations the operating profit function parameters (the a;’s) estimated using the Ackerberg, Caves,
and Frazer (2015) methodology based on value added (the operating profit function estimation
method is discussed in Section 2.2 in this appendix). In addition, we assume a simple discount
factor equal to M = 1/(1 +r) and r = 5%. We then estimate these four Euler equations
using a standard approach (e.g. Whited (1992), among many others). Specifically, we replace
the expectation operator with a white noise expectational error, which is uncorrelated with any
information known at time t. We then estimate each set of Euler equations seperately by the
generalized method of moments (GMM), using a constant as the only instrument (that is, the
identification assumption is that the expectation error is on average zero).

Unlike our baseline portfolio-level estimation approach, firm-level estimation is more sensitive
to undetected outliers in noisy firm-level data. To mitigate such concerns we clean further the data
for the firm-level Euler equation estimation. In particular, we only include firms that have: non-
negative sales, a depreciation rate of physical capital less than 100%, a minimum of 5 observations, a
minumum of 50 workers, and minimum capital stocks (physical, knowledge, and brand) of $100, 000.
We also eliminate observations with extreme values of the marginal products of the intangible capital
inputs.'? These data requirements leaves us with 2,088 firms for the estimation.

The adjustment cost parameter estimates, and implied firm value shares and input adjustment
costs, are presented in Table 5 and Table 6 (column 5). We can see that the point estimates of
the adjustment cost parameters are similar to the parameter estimates obtained when we target
the valuation ratio moments also using the firm-level data (column 4) and also broadly in line with

the other robustness checks reported. As noted above, the firm-level data is subject to substantial

128 pecifically, we eliminate observations in which the marginal product of knowledge capital or brand capital is
more than 20 times the marginal product of physical capital. We note that these variables (including depreciation
rate and sales data) are not directly used in our estimation method, hence these criteria do not affect our previous
results.
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noise, so the firm-level approach is likely to be more affected by noise and undetected outliers.
Nevertheles, although the point estimates of the adjustment cost parameters are not identical to
the baseline portfolio estimates, the implied value decomposition, the central result in our draft,
and also the implied magnitude of the input adjustment costs, do not change much relative to the
baseline estimation. In particular, the contribution of the non-physical capital inputs for firm value
is quite substantial, roughly 70% (which is similar to the value reported in the main draft).!?
While the Fuler equation approach is a valid alternative estimation method, in the context of
our application the estimation approach in the main draft has the advantage of being parsimonious,
not requiring the explicit estimation of cash flows (e.g., the factor share parameters in the operating
profit function), nor taking a stand on the stochastic discount factor.'* In addition, our approach
uses asset price data which we is important in our application because the goal is to understand
firm valuation in financial markets. Finally, our estimation approach using portfolio-level data is

less sensitive to noise in the data.

3.2.5 Alternative Samples

As discussed in Section 4.4 in the main text, in the main sample, we drop firms that never report (or
always report zero) R&D expenses. Ignoring these firms may not be efficient for the purposes of our
analysis, however, because these firms may be informative about the importance of the non-physical
capital inputs (labor and brand capital) for firm value. Thus, here we estimate a (restricted) version
of the model with physical capital, labor, and brand capital only, using the sample of firms that
were excluded from the main sample due to missing (or always zero) R&D expenses data. This
alternative sample includes 6,541 firms, and 60,316 firm-year observations.

Table 5, columns (6), reports the estimation results obtained using this alternative sample of

non-R&D firms. The model fit is even better than the baseline sample/model. The times-series R?

13The similarity between the point estimates reported in columns 4 (firm-level targeting the valuation ratio
moments) and column 5 (firm-level targeting the investment Euler equations) suggests that endogeneity concerns
in the investment-q relationship do not seem to be a major issue in our analysis.

4Gee, for example, Bond and Van Reenen (2007)) (Section 3) for an interesting analysis of the advantages and
disadvantages of different investment demand estimation approaches. Also, as discussed in the Related Literature
section 2 of the main draft, our approach of using asset price data (valuation ratios) to estimate model parameters
is closely related to previous work in the area (in particular, see Belo, Xue, and Zhang (2013) and Merz and Yashiv
(2007)).
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is 72%, whereas in the baseline sample it is 61%.

The share of labor ranges is 30.5% , whereas the share of brand capital is 12.9%. The share of
physical capital for non-R&D firms is significantly higher than in the baseline model: 56.7% here
versus 30.7% in the baseline sample. This higher share relative to the baseline sample is perhaps not
surprising given that, by definition, the non-R&D firms have zero knowledge capital, which (across
most specifications) is the non-physical capital input that contributes the most for firm value in the
baseline sample. In addition, the firms that do not perform R&D are likely to be firms from the
“old economy,” and naturally rely less on innovation and other intangibles, and more on installed
physical capital.

Taken together, the average contribution of the non-physical capital inputs for firm value in this
alternative sample is still more than 42% of firms’ market value. Although this share is smaller than
in the baseline model, it is still substantial, thus providing additional support for the importance

of the non-physical capital inputs for firm value.

3.3 An Alternative Intangible Capital Stock Based on SG&A Data

(Organization Capital)

In the main draft, we measure intangible capital using expenditure data on research and development
and on advertising. Therefore, to be included in our analysis firms must report these two types of
expenditures. Here, we consider an alternative measure of intangible capital (organization capital)
that does not differentiate between knowledge and brand capital. Specifically, we construct a
measure of organization capital based on Selling, General and Administrative (SG&A) expense
data, following Eisfeldt and Papanikolaou (2013). Since this item is more regularly reported we
can perform the analysis on a larger sample of firms. Our sample with physical capital, labor and
organization capital has 6,974 firms and 77,263 observations.

We construct the firms’ stock of organization capital from past expenditures data on SG&A

(Compustat data item XSGA) and using the perpetual inventory method as follows:

O

PO
K&, =KP(1-69) ]_fjl + 19, (24)
t
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where Pto is the BEA price index for consumption expenditures.!?

We set organization capital investment to be equal to 30% of SG&A expenditures following
Peters and Taylor (2017). To implement the law of motion in equation (24) we must choose an
initial stock and a depreciation rate. Using the perpetual inventory method, we set the initial stock

to:
K§ = 10 :
g@ 4+ 69 — 1O (1 — §9)

in which Ié) is the firm’s investment in organization capital in the first year in the sample, and 7° is
the average (net) growth rate of the price index for SG&A, which is 3.3% in the sample period used
for the estimation. We let ¢g© be industry-specific and set it equal to the average growth rate of the
SG&A investments in that industry; in practice, we consider 10 industry-groups based on the level
of the labor skill level in that industry. As for the organization capital depreciation rate, we use 20%.
Once we have the initial capital stock, we iterate forward using the appropriate depreciation rate,
SG&A expenses, and investment price index. The investment rate on organization capital is then
given by the ratio of the current period investment and the beginning of the period corresponding
knowledge capital stock I°/KPC.

We estimate the model using a quadratic adjustment costs specification using a sample of ten
portfolios based on each investment /hiring input (total of thirty portfolios). Table 7 first panel
displays the estimated slopes. Column (1), reports the point estimates of the adjustment costs
parameters in the pooled sample. The estimates of the adjustment costs parameters are p = 1.23
for physical capital, 8 = 6.16 for labor, and 0p = 9.49 for organization capital. The second panel
displays the model fit. According to the three metrics considered here, the model performs well —
both in the time-series and cross-section dimensions — when estimated across all firms. Columns (2)
and (3) display the estimated slopes and fit for low- and high skill industries. All the adjustment
costs parameters are positive and we can reject the hypothesis that these parameters are zero.
The estimate of the slope adjustment costs parameter for labor and organization capital increase
with the average labor-skill of the industry, from 67 = 2.60 and 6o = 5.49 in low-skill industries

to 0 = 6.79 and Op = 10.60 in high-skill industries. Going in the opposite direction, the slope

Y5Specifically, we use the annual series “Personal Consumption Expenditures: Chain-type Price Index, Index
2009=100" (DPCERG3A086NBEA) provided by the BEA.
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adjustment cost parameters for physical capital with the average labor-gkill level of the industry.
The model fit is particularly good is capturing the time-series variation in the valuation ratios in
high-skill industries, with a time series R? of 63%, whereas the time series fit in the low skill industry
is more modest, R? of 44%.

The last two panels in 7 use the estimated parameters to calculate the input-share decomposition
and adjustment costs. While using SG&A to measure intangible capital does not allow us to
differentiate across the two types of intangible (brand and knowledge), overall the decomposition
across physical capital, labor and intangible capital stays similar. Using the aggregate input-share
measure, in the pooled sample, physical capital accounts for about 32% of firm value while labor
accounts for 16.83% and organization capital for 51.05%. For firms in low-skill industries, labor
accounts for about 10% of firms’ market value while in high skill industries this number rises to
15.40%. While organization capital accounts for a larger share of firms’ value in high skill industries
(52% versus 43%), physical capital accounts for more value in low-skill industries (46.88% versus
32.65%). The last panel show the (average) median adjustment costs in each input. Adjusting labor
is more expensive in high-skill (4.27% of annual sales ) than in low-skill industries (1.84% of annual
sales). Organization capital is the most expensive input to adjust, accounting for almost 11% of

annual sales in the pooled sample.

33



Table 7: Model Estimation Using Organization Capital (SG&A)

This table reports estimation results and measures of fit for the sample of firms that reports SG&A. The estimation
uses thirty portfolios based on the lagged investment /hiring (ten based on each type of input). The estimation is done
using the cross-sectional average aggregation method and LS methodology. The first panel reports the estimation
results. 6p, 01, and 6o are respectively, the physical capital, labor, organization capital slope adjustment costs
parameters. s.e. stands for Newey-West standard errors with three lags. The second panel reports measures of fit,
m.a.e./|V R| is the mean absolute valuation error scaled by the absolute value of the ratio. The sample is annual data
from 1975 to 2016. The last two panels report input-shares and adjustment costs for this sample using the parameter
estimates.

Baseline

All Low High
Firms  Skill Skill

1 2 (3)

Parameter Estimates

Slope

Op 1.23  3.80 1.79
s.e. [1.09]  [0.98] [0.88]
0r, 6.16  2.60 6.79
s.e. [0.86]  [0.75] [0.81]
6o 949 549 10.60
s.e. [0.83]  [0.62] [0.84]

Model Fit
XS- R? 0.88 0.84 0.90
TS- R? 0.62 0.44 0.63
m.a.e/VR 024 027 0.24
Firm value decomposition
Aggregate (in %)

A’ : Physical capital 32.12  46.88 32.65
A" : Labor 16.83  9.99 15.40
A9 : Org. capital 51.05 43.13 51.95

Realized adjustment costs

(in % of annual sales)

CP/Y : Physical capital 0.60  1.20 1.14
CL/Y : Labor 4.04 1.84 4.27
CO/Y : Org. capital a4 1099 4.88 14.5
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3.4 Alternative Intangible Capital Depreciation Rate Specifications

Differently from tangible capital which depreciates due to physical decay or wear and tear, R&D
depreciates because its contribution to a firm’s profit declines over time. The main driving forces
for such depreciation are obsolescence and competition (Hall (2007)).

While for physical capital — due to tax benefits — firms report the (accounting) depreciation (and
hence we can compute the depreciation rate), for intangible capital inputs we need to estimate it.
Depreciation rates are important for our analysis because we do not observe stocks of intangible
capital and hence we use the perpetual inventory method together with expenditure data to calculate
stocks of knowledge and brand capital.

For the knowledge capital depreciation rate, we use the industry-level rates of R&D assets based
on the BEA-NSF data estimated by Li (2012) and reported in Table 4, column 3 for each industry.
Li’s paper develops a forward looking profit model with gestational lags to derive the depreciation
rates. This strategy levers out Compustat, BEA and NSF data to estimate — for the first time — a
complete set of R&D depreciation rates for major U.S. high-tech industries. Table 2 of Li’s paper
shows that her estimates are largely in line with many single industry studies. For those industries
not reported by Li (2012), we follow Peters and Taylor (2017) and use 15%. For brand capital we
follow Vitorino (2014) and set depreciation rate at 20%.

Since the depreciation rates affect the capitalization of the stocks, and hence the estimated
adjustment costs and value shares, here we perform robustness tests regarding the depreciation
rates. We redo our analysis for three different levels of depreciation of knowledge capital — (0.5, 1
and 1.5) times the value used in the calculations of the results in the paper — and brand capital (10%,
20%, 30%). This leads to 9 possible combinations of the knowledge and brand capital depreciation
rates. The number reported in the center of each table, in bold, is equivalent to the combination
used in the specification in the main draft.

Table 8 shows the median of the knowledge and brand investment rates and input stocks.
Because changes in the depreciation rates of intangible capital change the scale of the inputs, we
also report the scaled physical capital and labor stocks. Table 9 shows the parameter estimates
and Table 10 the model fit. An decrease in depreciation rate leads to lower investment rate of that

particular input (because we consider gross investment) and higher stock of the input, as one can

35



545

550

555

observe from the descriptive statistics in Table 8.

Although the estimated parameters are very similar, comparing across rows or columns we
observe that — especially for knowledge and brand capital parameters — this lower (higher) investment
rate leads to lower (higher) adjustment cost parameters. The lower parameters and investment rates
as a result of the lower depreciation rate pulls adjustment cost and shares down. But this decrease
in the depreciation rates leads to larger stocks of the input thus pulling shares and adjustment
costs up. The opposite direction of these components generates stability in the shares reported
in Table 11. Finally, Table 12 displays the adjustment costs estimated as a share of sales, as the
size of the adjustment varies with depreciation rate (lower depreciation, smaller investment), the
costs for knowledge and brand mechanically ends up having larger variation. To allow for a proper
comparison, we calculate in Table 13 the adjustment costs, evaluated at the same investment rate
of 10%. The table shows that the adjustment costs are stable.

Overall, the results reported here show that the value decomposition and adjustment costs
estimates that we report in the main draft are robust to reasonable perturbations of the depreciation

rates used for the intangible capitals.
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Table 8: Descriptive Statistics

This table reports the time-series average of the cross-sectional median, of selected characteristics of the firm level data
across all firms in the economy for the different assumptions about the intangible capital depreciation rates. Across
columns we vary the depreciation rate of brand capital from 10% to 30%, and across rows we vary the depreciation
rate of knowledge capital, from 7% to 23%. The center measure in bold is equivalent to the specification used in the
main draft.

0.10 0.20 0.30
I /K
0.07 | 0.19 0.19 0.19
0.15 | 0.28 0.28 0.28
0.23 | 0.37 0.37 0.37
If | K
0.07 | 0.16 0.25 0.35
0.15 ] 0.16 0.25 0.35
0.23 |1 0.16 0.25 0.35
KAy
0.07 1032 0.35 0.37
0.15 | 0.38 0.42 0.45
0.23 | 042 047 0.50
(Wit—1Lit) [ Ase
0.07 | 0.48 0.51 0.53
0.15 | 0.57 0.61 0.64
0.23 ] 0.64 0.69 0.73
KL JAy
0.07 1 044 048 0.50
0.15 | 0.35 0.38 0.40
0.23 | 0.28 0.31 0.33
K [ Au
0.07 1 0.13 0.09 0.06
0.15 | 0.15 0.10 0.08
0.23 | 0.17 0.12 0.09
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Table 9: Parameter Estimates
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This table reports the parameter estimates for all firms, low and high skill using the baseline model specification for
the different assumptions on depreciation rates. Across columns we vary the depreciation rate of brand capital from
10% to 30%, and across rows we vary the depreciation rate of knowledge capital, from 7% to 23%. 6p, 0L, Ok and
Op are, respectively, the physical capital, labor, knowledge capital, and brand capital adjustment cost parameters.

The center estimate in bold is equivalent to the specification in the main draft.
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Table 10: R2 across Depreciation Rates

This table reports the measure of fit estimates (R?) for all firms, low and high skill using the baseline model
specification for the different assumptions on depreciation rates. Across columns we vary the depreciation rate
of brand capital from 10% to 30%, and across rows we vary the depreciation rate of knowledge capital, from 7% to
23%. The center estimate in bold is equivalent to the specification in the main draft.

All Firms Low Skill High Skill
0.10 0.20 0.30 0.10 0.20 0.30 0.10 0.20 0.30
0.07 1094 094 094 0.07 1094 094 094 0.07 1093 094 094
0.15] 094 0.94 094 0.15]0.95 0.95 0.94 0.15] 094 0.94 094
0231095 094 094 023095 094 094 0231094 094 094
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Table 11: Shares across Depreciation Rates

This table reports the model-implied input-shares () for all firms, low and high skill using the baseline model
specification for the different assumptions on depreciation rates. Across columns we vary the depreciation rate of
brand capital from 10% to 30%, and across rows we vary the depreciation rate of knowledge capital, from 7% to 23%.
The center estimate in bold is equivalent to the specification in the main draft.

All Firms Low Skill High Skill
0.10 0.20 0.30 0.10 0.20 0.30 0.10 0.20 0.30
Firm-value decomposition - Aggregate (in %)
u’ : Physical u’ : Physical u’ : Physical
0.07 | 30.27  30.73 30.30 0.07 | 38.47  38.07 38.94 0.07 | 30.45 30.92 30.43
0.15 | 30.64 30.36 30.46 0.15 | 38.49 40.16 40.39 0.15 | 29.77 29.91 30.18
0.23 | 30.27  29.62 29.70 0.23 | 37.92  39.08 39.79 0.23 | 29.15 29.50 29.89
uE : Labor uE 2 Labor uE 2 Labor
0.07 | 20.34 2046 20.79 0.07 | 13.07 14.19 14.05 0.07 | 18.18 18.50 18.72
0.15 | 21.90 22.53 22.54 0.15 | 13.35 14.33 14.21 0.15 | 20.42 20.85 20.64
0.23 | 22.54 23.30 23.30 0.23 | 13.53 14.64 14.68 0.23 | 21.47 21.51 21.33
wX . Knowledge w5 . Knowledge w5 Knowledge
0.07 | 40.18  40.33 40.47 0.07 | 23.30 22.97 22.38 0.07 | 44.75 4484 44.95
0.15 | 38.00 38.28 38.26 0.15 | 21.86 20.34 20.67 0.15 | 43.05 43.23 43.14
0.23 | 37.02 37.51 37.54 0.23 | 20.87  20.00 20.16 0.23 | 42.32  42.47 4251
u?B . Brand u? . Brand u? . Brand
0.07 | 9.21 8.47  8.44 0.07 | 25.16  24.77 24.63 0.07 | 6.62 574  5.89
0.15 9.46 8.83 8.73 0.15 | 26.30  25.17 24.74 0.15 6.76 6.02 6.04
0.23 | 10.17 9.58 9.46 0.23 | 27.68  26.28 25.37 0.23 7.07 6.52 6.27
Firm-value decomposition - Average (in %)
uF . Physical uF . Physical uF . Physical
0.07 | 22.39 22,60 22.08 0.07 | 40.88  40.27 41.29 0.07 | 22.03 22.26 21.77
0.15 | 22.43 21.85 21.90 0.15 | 41.18 42.64 42.83 0.15 | 21.01 20.91 21.13
0.23 | 22.02 20.98 21.01 0.23 | 40.64  41.58 42.38 0.23 | 20.20 20.32 20.61
w® : Labor w® : Labor w® : Labor
0.07 | 24.02 23.99 24.38 0.07 | 16.48 17.94 17.76 0.07 | 21.38  21.66 21.88
0.15 | 26.01 26.61 26.62 0.15 | 17.00 18.14 17.95 0.15 | 23.94 24.32 24.10
0.23 | 26.98 27.75 27.76 0.23 | 17.39  18.67 18.63 0.23 | 25.23  25.22 25.01
wX o Knowledge wX : Knowledge uX . Knowledge
0.07 | 49.13 4890 49.03 0.07 | 25.73  25.23 24.66 0.07 | 53.056  52.79 52.91
0.15 | 47.00 46.84 46.81 0.15 | 23.92 22.19 22.64 0.15 | 51.52 51.36 51.28
0.23 | 46.01  46.15 46.15 0.23 | 23.00 21.86 21.96 0.23 | 50.86  50.76 50.77
B : Brand B : Brand uB . Brand
0.07 | 4.45 4.51 4.52 0.07 | 16.91  16.56 16.30 0.07 | 3.54 3.29 3.45
0.15 4.56 4.70  4.67 0.15 | 17.89 17.03 16.58 0.15 3.53 3.41 3.49
0.23 | 4.99 5.12 5.07 0.23 | 1898 17.89 17.04 0.23 3.71 3.70 3.62
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Table 12: Realized Adjustment Costs across Depreciation Rates

This table reports the estimated realized adjustment costs (CX/Y') for all firms, low and high skill using the baseline
model specification for the different assumptions on depreciation rates. Across columns we vary the depreciation rate
of brand capital from 10% to 30%, and across rows we vary the depreciation rate of knowledge capital, from 7% to

23%. The center estimate in bold is equivalent to the specification in the main draft.

All Firms Low Skill High Skill
0.10 0.20 0.30 0.10 0.20 0.30 0.10 0.20 0.30
% CP/Y CP/Y CP/Y
0.07 | 1.17 1.21 1.08 0.07 | 1.10 0.96 1.04 0.07 | 2.00 2.04 1.89
0.15 | 1.03 0.90 0.92 0.15 | 1.09 1.22 1.22 0.15 | 1.55 1.50 1.56
0.23 | 0.88 0.67 0.67 0.23 | 1.04 1.10 1.15 0.23 | 1.26 1.30 1.37
CL/Y CL/Y CL/Y
0.07 | 6.12  6.09 6.16 0.07 | 244 2.60 2.55 0.07 | 6.25  6.29 6.34
0.15 | 6.37 6.46  6.45 0.15 | 248 2.61 2.58 0.15 | 6.70 6.77  6.70
0.23 | 6.46  6.58 6.56 0.23 | 2.53 2.68 2.66 0.23 | 6.92  6.87 6.81
CK/Y CK/Y CK/Y
0.07 | 6.37  6.28 6.26 0.07 | 1.63 1.55 1.48 0.07 | 8.38  8.26 8.25
0.15 | 10.16 10.05 10.01 0.15 | 2.62 2.35 2.38 0.15 | 13.42 13.28 13.24
0.23 | 14.24 1417 14.14 0.23 | 3.63 3.37 3.36 0.23 | 18.82 18.70  18.68
CB/Y CB/Y CB/Y
0.07 | 0.09  0.49 0.92 0.07 | 0.72 1.66 2.63 0.07 | 0.04 0.31 0.70
0.15 | 0.08 0.49 0.91 0.15 | 0.78 1.69 2.64 0.15 | 0.02 0.30 0.67
0.23 | 0.13  0.56 1.01 0.23 | 0.86 1.80 2.72 0.23 | 0.04 0.36 0.70
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Table 13: Adjustment Costs at 10% Investment

This table reports the estimated adjustment costs (CX/Y) for a 10% investment rate for all firms, low and high skill
using the baseline model specification for the different assumptions on depreciation rates. Across columns we vary
the depreciation rate of brand capital from 10% to 30%, and across rows we vary the depreciation rate of knowledge
capital, from 7% to 23%. The center estimate in bold is equivalent to the specification in the main draft.

All Firms Low Skill High Skill
0.10 020 0.30 0.10 0.20 0.30 0.10 020 0.30
CP/Y CP/Y CP/Y
0.07 | 020 020 0.8 007|043 037 040  0.07 | 0.28 028 0.26
0.15 | 0.17 0.15 0.15 015|042 0.47 047  0.15| 021 0.21 0.22
023|015 011 011 023|040 043 045  0.23|0.17 018 0.19
CL)Y CL/Y CL]Y
0.07 | 1.81 1.80 1.83 007 | 089 095 094  0.07 | L.77 178 1.79
0.15|1.80 1.91 191 015|091 0.96 095  0.15|1.90 1.92 1.90
023|192 195 194 023|093 098 098 023|196 194 1.93
CK|Y CK]Y CK|Y
007 | 1.56 154 153 007|079 075 072 007|181 1.78 1.78
0.15 | 1.07 1.06 1.06 0.5 | 053 0.47 048 015 | 1.30 1.29 1.29
023|085 085 084 023|043 040 040 023 | 1.03 1.02 1.02
CBJY CB/Y CB/Y
0.07 | 0.04 008 009 007035 029 022 007|002 005 0.05
0.15 | 0.03 0.08 009 015|038 0.30 022  0.15|00L 0.05 0.05
023|005 009 010 023|042 032 023  0.23|00L 006 0.05

4 Additional Results

4.1 Heterogeneity in the Adjustment Costs and Shares

In the main text, we summarize the properties of the input-shares in the economy using the aggregate
and average measures. Here, we add to that analysis by investigating the degree of input-share
heterogeneity in the firm-level data. Figure 2 shows the box plot (across all years) of the firm-value
input-shares for the low- and high-skill industries. This figure reveals that there is substantial
heterogeneity in input-shares both in low- and high-skill industries. For example, for physical
capital, the 25th and 75th percentile in low-gkill industries are around 22% and 50%, respectively,

and in high-skill industries they are around 10% and 30%, respectively. For labor, the 25th and 75th
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percentile in low-skill industries are around 5% and 25%, respectively, and in high-skill industries
they are around 10% and 40%, respectively. For knowledge capital, the 25th and 75th percentile
in low-skill industries are around 10% and 30%, respectively, and in high-skill industries they are
around 25% and 70%, respectively. Finally, for brand capital, the 25th and 75th percentile in
low-skill industries are around 5% and 30%, respectively, but in high skill industries, the mass of
the share is concentrated at very low levels, all below 10%. Thus, the relatively low share of brand
capital for firm value in high-gkill industries is a consistent feature across all firms in these industries.

To evaluate the degree of firin-level heterogeneity in the realized adjustment costs of each input
in the data, Figure 3 shows the box plot of the ratios in the low- and high-skill industries. The
box plot of the realized adjustment costs in each industry shown in Figure 3 reveals that there is
substantial variation in the realized input adjustment costs across firms. As expected, given the
strong link between input-shares and adjustment costs, the pattern in the box-plots of the realized
firm-level realized adjustment costs across industries and inputs seems to mimic the pattern and

the large variation in firm-level shares of each input reported in Figure 2.

4.2 Estimation Across the Fama and French Industry Classifications

Tables 14 to 18 report the results of the benchmark model estimation (quadratic costs with 40
portfolios) for the Fama-French industries. Note that we perform the estimation separately across
each one of the seven Fama-French industries based on the Fama-French ten industry classification
(we exclude three industries due to data availability), thus allowing us to check the robustness of the
findings to the industry classification. We use fewer industries here than in the previous subection
3.2.2 because we need a sufficient number of observations over all time periods to construct the

portfolios.
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Figure 2: Distribution of Input Market Value Shares

This figure shows the distribution (box plot) of the estimated firm-level input input-shares () in high- and low-skill
industries, using the parameter estimates reported in Table 3 in the main text, columns (2) and (3), to obtain the
input-shares. In each box, the central mark is the median, the edges of the box are the 25th and 75th percentiles.
The whiskers extend to the most extreme data points the algorithm considers not to be outliers.

Physical Capital Labor
100 ‘ ‘ 100 ‘
R
80 \ 80 f -
\
2\°1 60 | ‘ | 3\0, 60 T I
[%2] 1 ‘ [%2] ‘ ‘
o o \
S 40t ! 2 40t \ l
] | @ |
20 ; 1 20
L
0 ‘ =+ 0 I x
Low Skill High Skill Low Skill High Skill
Knowledge Capital Brand Capital
100 \ ‘ 100 ‘
\
80 \ 80
|
- T T
& 60 \ @ 60 \
8 | 5 & |
S 40t ‘ B 40 !
» | |
20 ‘ 1 20
| I
0 L == 0 T ==
Low Skill High Skill Low Skill High Skill

44



Figure 3: Distribution of Realized Input Adjustment Costs

This figure shows the distribution (box plot) of the estimated firm-level adjustment costs as a fraction of firms’ annual
sales (CX/Y) in high- and low-skill industries, using the parameter estimates reported in Table 3 in the main text,
columns (2) and (3), to calculate the adjustment costs. In each box, the central mark is the median, the edges of the

box are the 25th and 75th percentiles. The whiskers extend to the most extreme data points the algorithm considers
not to be outliers.
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Table 15: Parameter Estimates and Model Fit Across Fama-French Industries

This table reports estimation results and measures of model fit. The columns show the values for benchmark estimates
for the Fama-French industries. The estimation uses forty portfolios based on the lagged investment /hiring (ten based
on each type of input) for all industries except for the industry “shops” which, due to data limitations, is performed
using 5 portfolios of each. The estimation is done using the cross-sectional average aggregation method and LS
methodology. The first panel reports the estimation results. 0p, 1, 0x and 0 are respectively, the physical capital,
labor, knowledge capital and brand capital slope adjustment costs parameters. s.e. stands for Newey-West standard
errors with three lags. The second panel reports measures of fit, m.a.e./|V R| is the mean absolute valuation error
scaled by the absolute value of the ratio. The sample is annual data from 1975 to 2016.

NoDur Durbl Manuf HiTech Shops HIth Other
(1) (2) (3) (4) G 6

Parameter estimates

Op 6.86 2.81 3.84 4.12 4.51 8.41 5.29
s.e. [0.97]  ]0.66] [0.89] [0.90] [1.24] [1.01] [1.08]
0r, 3.04 4.53 8.10 8.55 6.29 7.00 3.96
s.e. [0.85]  [0.55]  [0.70] [0.64] [0.85] [0.72] [0.51]
O 18.00 24.63  14.68 10.55 21.05 16.51 13.12
s.e. [2.82] [1.38] [1.69] [0.75]  [3.47] [0.81] [1.66]
Op 10.35 1.66  10.73 1.84 16.07 430 8.74
s.e. [141] [1.62] [1.95] [3.62] [2.82] [1.66] [2.40]
Model fit
XS- R? 0.45 0.83 0.86 0.92 0.90 093 0.84
TS- R? 0.12 0.38 0.39 0.52 0.38 047 0.23
m.a.e/VR  0.47 0.35 0.29 0.26 0.38 027  0.50
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Table 16: Estimated Input-Shares Across Fama-French Industries

This table reports the fraction of firm value that is attributed to each input (i, input-shares) based on their book and
market values for the Fama-French industries. The book-value decomposition is done by setting all the adjustment
costs to zero. We use the parameter estimates reported in Table 15 to calculate the market value decomposition.
We report both the aggregate and the average input-share decomposition. The table shows the time series averages
between 1975 to 2016.

NoDur Durbl Manuf HiTech Shops HIth Other
(1) (2) (3) (4) () (6 (1)

Book value decomposition - Aggregate (in %)

A’ : Physical capital 62.22  71.28  70.68 53.89  77.86 4595 T77.21
" : Labor 0.00 0.00 0.00 0.00 0.00 0.00 0.00
% : Knowledge capital ~ 8.00 18.56  18.03 36.74 4.05 38.84 11.41
/ZB : Brand capital 29.78 10.16  11.29 9.36 18.08 15.22 11.38
Book value decomposition - Average (in %)
A" : Physical capital 65.60  69.71  74.58 4525  69.72 44.43 T1.52
A" : Labor 0.00 0.00 0.00 0.00 0.00 0.00 0.00
A% . Knowledge capital 9.06 19.22  17.33 47.28 10.50 48.25 17.82
A2 : Brand capital 25,34 11.08 8.09 7.47 19.78 7.32  10.66
Market value decomposition - Aggregate (in %)
i” : Physical capital  39.96 3429 3941 27.95 38.66 28.83 50.92
/ZL : Labor 4.96 5.36 15.11 19.23 2547 8.35 15.1
a% : Knowledge capital  15.09  55.41  29.88 48.94 8.52  52.66 18.1
A2 : Brand capital 39.99 4.94 15.6 3.88 27.35 10.17 15.88
Market value decomposition - Average (in %)
A’ : Physical capital 43.84 32.84 39.93 21.52  33.05 25.87 49.78
A" : Labor 4.74 11.83 19.81 19.88 2597 11.71 1841
A% : Knowledge capital  18.08  50.05  28.82 55.8 13.47  58.43 20.65
AP : Brand capital 33.34 5.28 11.44 2.81 2751 399 11.16
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Table 18: Estimated Adjustment Costs Across Fama-French Industries

The first panel of this table displays the average skill index within each Fama-French Industry. The skill index ranges
from 1 (lowest skill level) to 10 (highest skill level) and the data is from Belo et al. (2017). The second panel evaluates
the adjustment costs using the parameter estimates reported in Table 15 and evaluated at 10% investment and hiring
rates as a proportion of the respective (average) median input stock-to-sales in Table 14.

NoDur Durbl Manuf HiTech Shops HIth Other
(1) (2) 3) (4) ®G) 6 (@

Labor skill index
3.42 5.53 6.69 9.70 4.87 8.38 6.30

Adjustment costs evaluated at 10% investment /hiring

CP/Y : Physical capital 1.58 0.59 0.96 0.62 0.50 1.85 1.22
CL/Y : Labor 0.64 1.54 2.59 3.16 1.20  2.80 1.23
CK/Y : Knowledge capital  0.72 2.22 1.32 2.714 042 6.27 0.79
CB/Y : Brand capital 1.24 0.08 0.54 0.09 096 026 035

Realized adjustment costs (in %)

CP/Y : Physical capital 1.93 1.1 1.15 4.27 1.82 718 591
CL/Y : Labor 0.74 1.71 2.84 7.04 4.45  6.07  5.92
CK/Y : Knowledge capital  2.24 7.14 3.06 20.54 1.61 2045 294
CB/Y : Brand capital 3.56 0.22 1.24 0.29 3.27 1.06 1.43
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