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1 The Aggregation Bias in BXZ/LWZ and Alternative Estimation

Procedure

Equation (21) in the main draft establishes an exact relationship between a �rm's observed valuation

ratio and the model-implied valuation ratio. As explained in the draft, we perform the estimation

at the portfolio-level as in Belo, Xue, and Zhang (2013) (henceforth BXZ), which in turn follow the5

original approach in Liu, Whited, and Zhang (2009) (henceforth LWZ). Unlike LWZ/BXZ, however,

we estimate the model parameters by targeting cross-sectional portfolio-level moments that do not

require aggregating the data to construct a portfolio-level aggregate valuation ratio. Here, we discuss

in more detail why we modify the estimation procedure relative to BXZ/LWZ, and show that our

estimation procedure allow us to recover the fundamental �rm-level structural parameters.10

Aggregation in LWZ/BXZ To understand the need for our estimation method, it is useful

to revisit the aggregation procedure in LWZ/BXZ.1 Following the approach in LWZ/BXZ, one

would estimate the valuation equation at the portfolio-level by �rst computing the portfolio-level

characteristics (e.g., the portfolio-level investment rates), and then plugging these characteristics

directly in the valuation equation (21) to obtain the observed and the model-implied valuation15

ratios. Speci�cally, in year t, the portfolio j investment rate in physical capital is computed as

IKjt
Kjt

=

∑
i I
K
j,i,t∑

iKj,i,t
, i ∈ Portfolio j (1)

which is then substituted in equation (17) to obtain the portfolio-level shadow price of the physical

capital stock. Similarly, the portfolio level observed valuation ratio and capital stocks are given by

V Rjt =

∑
i (Pit +Bit+1)∑

iAit

Kjt =
∑
i

Kj,i,t , i ∈ Portfolio j.

1Liu, Whited, and Zhang (2009) estimate the model predicted investment returns rather than valuation ratios using
portfolio-level aggregated data. The two are closely related because, to a �rst order approximation, the investment
return is the valuation equation in �rst di�erences.
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The estimation would then proceed to estimate the parameter values by the Generalized Method

of Moments (GMM) under the identi�cation assumption that the model errors, computed as the20

di�erence between the portfolio-level aggregated observed and model-implied valuation ratios, are

on average zero.

The LWZ/BXZ approach provides a powerful framework for identifying robust links between

valuation ratios/stock returns and portfolio-level characteristics. In addition, this approach averages

out the noise in �rm-level data in a convenient and elegant manner. Unfortunately, the aggregation25

procedure in the LWZ/BXZ approach complicates the interpretation of the parameter estimates

as we will show with model-implied data below, because it is subject to an aggregation bias.

Speci�cally, by using the portfolio-level characteristics computed as in equation (1) to construct

the shadow price of the capital input in equations (17) of the main draft, the procedure does not

guarantee the recovery of the true �rm-level structural parameters because the shadow prices of the30

capital inputs are, in general, nonlinear functions of the �rm characteristics.

Our Alternative Estimation Procedure To recover the �rm-level structural parameters we

thus modify the econometric approach proposed in LWZ/BXZ. As noted, in theory, any moment

of the observed �rm-level valuation ratios in equation (21) should be equal to any corresponding

moments of the model-implied �rm-level valuation ratios. Thus, we target cross-sectional portfolio-35

level moments that do not require aggregating the data to construct a portfolio-level aggregate

valuation ratio, hence avoiding the aggregation bias. Speci�cally, in each year, we compute the

portfolio-level valuation ratio by taking the cross-sectional equal-weighted mean of the �rm-level

observed and model-implied valuation ratios, which we refer to as cross-sectional mean estimation.

We perform the estimation of the valuation equation (17) under the standard assumption that40

the portfolio-level valuation ratio moments are observed with error by the econometrician:

V Rjt = V̂ Rjt (Θ) + εjt, (2)

where V̂ Rjt (Θ) denotes the model-implied portfolio-level moment of the cross-section of �rm-level

valuation ratios for the �rms in portfolio j at time t, Θ represents the vector of structural parameters,

i.e. Θ = [θP , θL, θK , θB], and ε captures the error in the portfolio-level moments. Based on equation
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(2), we estimate the model parameters by least squares (LS), that is, we minimize the distance45

between the portfolio-level observed and model-implied valuation ratios moments:

Θ̂ = arg min
Θ

1

TN

T∑
t=1

N∑
j=1

(
V Rjt − V̂ Rjt (Θ)

)2

.

Thus, unlike LWZ and BXZ, who estimate the model parameters by matching the time series

means of the observed and model-implied portfolio valuation ratios, the use of LS in our estimation

requires the model to match the realized time series of the observed cross sectional moments of the

valuation ratios as close as possible. While in the absence of noise in the data, the GMM estimation50

is able to recover the true �rm level parameters if one uses our aggregation procedure, we �nd that

the time series data provides additional power to pin down the parameters when we use noisy �rm

level data.

To show the aggregation bias in LWZ/BXZ explicitly and how our procedure avoids this bias,

we consider a particular calibration of the adjustment costs function in the context of the one-55

physical- capital input model.2 We then use arti�cial data to investigate the ability of the two

estimation approaches to recover the underlying �rm-level structural parameters. We document

that the parameter estimates using the aggregation procedure in LWZ do not have a structural

interpretation. In addition, we verify that our alternative portfolio-level estimation method proposed

in the main text allow us to recover the �rm-level structural parameters.60

For simplicity, we consider the one-physical-capital input model. To proceed, we generate data

from a model economy in which the assumptions of the baseline investment model hold (and hence

the �rm-level observed and predicted (model-implied) valuation ratios are equal). But instead of

simulating data from a model economy, we use real data as follows. We construct the capital stock

process for each �rm by using the law of motion:65

Kit = (1− δ)Kit−1 + Iit. (3)

We use the �rm-level physical capital investment data for Iit and the initial capital stock of the

2Belo, Deng, and Salomao 2019 provide a general analysis of the aggregation bias and other economic issues in
the context of empirical tests of investment-based models.
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�rm to be K0 and assume a depreciation of 10%. To generate (arti�cial) price data in this economy,

we use the valuation equation implied by the neoclassical model, that is:

V Rit = {1 + (1− τt)θ
It

Kt−1
}, (4)

where V Rit ≡ Pit
Kit

in which Pit is the market value of equity. Thus, by construction, the observed

and the model-implied valuation ratio are equal (that is, the assumptions of the model are satis�ed).70

The econometric exercise of interest here is then to investigate the extent to which the di�erent

estimation approaches allow us to recover the structural parameters, which in our case is the

parameter θ . To make the results more general, we consider two values of the slope adjustment

cost parameters θ = 10 or 40. The curvature is �xed at 2 (quadratic), as in the baseline speci�cation

of the model in the main text. Given these parameters, we can generate a time series of (arti�cial)75

valuation ratios in the model using equation (4).

To examine the role of the impact of portfolio-level aggregation of the �rm characteristics using

the LWZ procedure, we �rst create 10 and 50 portfolios sorted on lagged investment. As in LWZ,

we construct the portfolio-level counterpart of the valuation ratio as follows. For each portfolio

j = 1, ..., 10, or 50 , and in each period, we have:80

V Rjt =

∑N
i Pit∑N
i Kit

, i ∈ Portfolio j (5)

Ijt/Kjt−1 =

∑N
i Iit∑N

i Kit−1

. (6)

To estimate the model parameters we construct the model-implied predicted valuation ratio

V̂ Rjt as:

V̂ Rjt ≡ 1 + (1− τt)θ̂
It

Kt−1

which uses the portfolio-level investment rate computed as in equation (6). Following LWZ, we

estimate the model parameters (θ) by the Generalized Method of Moments (GMM) using the

moment condition:85

E
[
V Rjt − V̂ Rjt

]
= 0, j = 1, .., 10 or 50. (7)
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We use the identity matrix as the weighting matrix. We label this method as GMM-XS. For

comparison with the estimation approach used here that matches the time series data (and to

establish that the conclusions here only depends on aggregation issues, and not on the estimation

method (GMM versus LS, or time-series versus cross-sectional moments, used), we also estimate

the parameters by minimizing the sum of squared residuals. That is, let90

εjt = V Rjt − V̂ Rjt.

We then estimate the model parameters by minimizing the objective function:
∑T

t=1

∑N
j=1 ε

2
jt . We

denote this method as LS-TS. For each estimation method, we report the parameter estimate of

the slope coe�cient θ (reported as θ̂) for the two cases θ = 10,or 40, together with the estimation

bias, computed as the percentage deviation of the estimated parameter value relative to the true

parameter value (bias= θ̂−θ
θ ).95

Table 1, rows LWZ/BXZ, report the estimation results using the LWZ/BXZ aggregation method,

and rows Our-XSM, report the estimation results using the our cross-sectional equally weighted

mean method. The �rst panel reports the results using the 10 investment-rate (IK) portfolios, and

the second reports the results using 50 IK portfolios. The columns on the right report the results

using the GMM-XS estimation approach (that is, matching the time series average of the cross100

section of the portfolios), while the columns on the left report the results using LS-TS estimation

approach (that is, matching the time series realization of each portfolio).

Table 1 reveals that, across all cases, the parameter estimates using the LWZ/BXZ aggregation

procedure di�er from the true �rm-level structural parameters, and hence do not have a structural

interpretation. In all cases considered here, the bias in the estimation ranges from -16.40% to -1.40%,105

and is never zero. Also, the parameter estimates vary signi�cantly across the number of portfolios

(10 vs. 50) and across the estimation procedures (GMM-XS vs LS-TS), which should not occur in

large samples if the estimation procedure is consistent, in which case the procedure should recover

the true underlying parameter values. Indeed, the variation of the parameter estimates across test

assets helps us understand why the parameter estimates reported in LWZ vary signi�cantly across110

di�erent test assets used in the estimation. The bias occurs because of the aggregation issues in the
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Table 1: Comparison of Estimation Methods: the Impact of Portfolio-Level
Aggregation

This table reports the estimates of the model parameters across di�erent portfolio-level aggregation methods for the
one-physical-capital input model with curvature equal to 2, and the slope adjustment cost parameter represented by
θ. We consider two values of true model parameters at the �rm level: θ = 10 or θ = 40. For each method, θ̂ is
the estimated parameter, and bias is the percentage deviation of the estimated parameter value relative to the true

parameter value (bias= θ̂−θ
θ

). In LWZ/BXZ the data is aggregated by �rst aggregating the �rm characteristics to
obtain the portfolio-level predicted valuation ratio as described in this appendix. XSM is the equal-weighted cross
sectional mean aggregation method in which we compute the portfolio-level observed and predicted cross sectional
valuation ratio across all the �rms in the portfolios in each year. The test assets are 10 and 50 investment rate
portfolios. Two estimation methods are used. In LS-TS the parameters are obtained by minimizing the sum of
squared portfolio-level residual (the di�erence between observed and model-implied valuation ratio) at the portfolio-
level. In GMM-XS the parameters are obtained by matching the average observed and predicted valuation ratio of
each portfolio (as in LWZ/BXZ).

LS-TS GMM-XS

True Value: θ = 10 θ = 40 θ = 10 θ = 40

Estimate: θ̂ Bias (%) θ̂ Bias (%) θ̂ Bias (%) θ̂ Bias (%)

Estimation using 10 IK Portfolios

LWZ/BXZ 8.72 -12.80 34.91 -12.73 8.36 -16.40 33.44 -16.40

Our-XSM 10.00 0.00 40.00 0.00 10.00 0.00 40.00 0.00

Estimation using 50 IK Portfolios

LWZ/BXZ 9.86 -1.40 39.47 -1.32 9.73 -2.70 38.91 -2.73

Our-XSM 10.00 0.00 40.00 0.00 10.00 0.00 40.00 0.00
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procedure. The non-linearities in the valuation ratio mean that the true portfolio-level valuation

ratio is di�erent from the portfolio-level valuation ratio obtained by �rst aggregating each portfolio-

level characteristics (investment rate, etc.) separately, to construct the portfolio-level valuation

ratio counterparts.115

Turning to the analysis of the performance of the alternative estimation procedure proposed

in the main text, namely the use of equal-weighted cross-sectional mean, Table 1 shows that this

procedure avoids the aggregation issues in LWZ/BXZ. In particular, the results in Table 1 show that

the alternative aggregation procedure is unbiased, thus allowing us to recover the true underlying

�rm-level structural parameters. We also have done tests with the multiple capital input model and120

�nd that, even with noise, the proposed estimation of the paper is able to recuperate the adjustment

costs parameters.

Naturally, with measurement error, the analysis becomes signi�cantly more complicated. Since

measurement error in �rm-level data is not directly observed, di�erent assumptions about the

nature of the error may lead to di�erent results. This does not necessarily invalidate the previous125

analysis, however. The analysis here shows that, even without measurement error, the aggregation

procedure in LWZ/BXZ contaminates the parameter estimates and hence prevents them from having

a structural interpretation.

2 The Constant Returns to Scale Assumption of the Operating

Pro�t Function130

Here we discuss the constant returns to scale (CRS) assumption of the operating pro�t function, and

provide theoretical and empirical support for this speci�cation. This assumption greatly simpli�es

the estimation of the model because it allows for a closed form solution of the equilibrium market

value of the �rm.

Subsection 2.1 shows that a speci�cation of the operating pro�t function that is homogeneous135

of degree one (or, equivalently, CRS) in the capital inputs is consistent with a speci�cation in which

the �rm's production technology exhibits decreasing returns to scale (DRS) in a subset of the inputs

and the �rm has market power (faces a downward sloping demand curve) and optimally chooses
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output price to maximize pro�ts. Subsection 2.2 uses applied economics methodology to estimate

the parameters of the production function.140

2.1 Interpretation: Decreasing Returns to Scale and Market Power

Assume the �rm faces the following downward-sloping demand curve:

Pt = Bγ
t Q

1
ε
t , γ > 0 and ε < −1 (8)

where Bt is the �rm's stock of brand capital (which a�ects consumer's willingness to pay (WTP) for

the good), Pt is the price of the good (chosen by the �rm) and Qt is the quantity demanded. The

parameters satisfy the constraints γ > 0 (impact of brand capital on consumers' WTP is positive)145

and ε < −1 is the demand elasticity, which is assumed to be less than minus one, that is, demand

is elastic. We are ruling out an inelastic demand because it is never optimal for a monopolist to

operate in the inelastic portion of the demand curve.

Now, assume the �rm's production function is given by:

Qt = XtE
αE
t , αE > 0 and αK + αE ≤ 1 (9)

where Et captures the variable (non quasi-�xed) inputs (for example, energy or other materials).150

To save on notation, we bundled all the quasi-�xed capital inputs and the productivity level in the

variable Xt. For example, if the only quasi-�xed input in the production function is physical capital,

we have:

Xt = AtK
αK
t , αK > 0 and αK + αE ≤ 1. (10)

If we have labor or other inputs, we can just re-specify Xt accordingly.

We can write the operating pro�t function as a function of the �rm's quasi-�xed capital inputs.155

This is obtained by choosing the optimal level of the variable inputs that maximize the per period
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pro�ts:

max
Et

Πt = PtQt − ctEt

s.t. (8) and (9)

where ct is the marginal cost of one unit of the variable inputs. Substituting equations (8) and (9)

in the objective function we have

max
Et

Πt = Bγ
t X

1+ 1
ε

t E
αE(1+ 1

ε)
t − ctEt (11)

The �rst order condition (FOC) w.r.t. to Et is:160

αE

(
1 +

1

ε

)
Bγ
t X

1+ 1
ε

t E
αE(1+ 1

ε)−1

t = ct (12)

To facilitate the algebra, multiplying both sides of the FOC (12) by Et and then re-arranging

the terms we obtain:

αE

(
1 +

1

ε

)
Bγ
t Q

1+ 1
ε

t = E∗
t ct

Next, we substitute ctEt in the objective function (11) at the optimum, and obtain:

Π∗
t =

(
1− αE

(
1 +

1

ε

))
Bγ
t Q

1+ 1
ε

t (13)

Note that we need to �nd the optimal level of the variable inputs. We can solve equation (12) for

E∗
t165

E∗
t =

[
1

αE
(
1 + 1

ε

)B−γ
t X

−1− 1
ε

t ct

] 1

αE(1+1
ε)−1

(14)

Now, substitute equation (14) into equation (13) in Q∗
t = XtE

∗αE
t to get:
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Π∗
t = ÃtB

γ

(
1−

αE(1+1
ε)

αE(1+1
ε)−1

)
t K

αK(1+ 1
ε)

(
1−

αE(1+1
ε)

αE(1+1
ε)−1

)
t (15)

where:

Ãt ≡
(
1− αE

(
1 + 1

ε

))
[
αE
(
1 + 1

ε

)] αE(1+1
ε)

αE(1+1
ε)−1

c

αE(1+1
ε)

αE(1+1
ε)−1

t A
(1+ 1

ε)

(
1−

αE(1+1
ε)

αE(1+1
ε)−1

)
t

which is always a positive number. We can interpret this variable as the e�ective productivity level

of the �rm in the operating pro�t function.

For the operating pro�t function to have CRS in the two quasi-�xed capital inputs (physical170

capital and brand capital, Kt and Bt, respectively) we need:

γ

(
1−

αE
(
1 + 1

ε

)
αE
(
1 + 1

ε

)
− 1

)
︸ ︷︷ ︸

Coe�cient on Bt in Π∗t

+ αK

(
1 +

1

ε

)(
1−

αE
(
1 + 1

ε

)
αE
(
1 + 1

ε

)
− 1

)
︸ ︷︷ ︸

Coe�cient on Kt in Π∗t

= 1 (16)

so that the optimized operating pro�t function Π∗
t is CRS in the two capital inputs.

Now recall that ε < −1 so that 0 < 1 + 1
ε < 1. Also, γ ≥ 0, αE + aK ≤ 1 and αE > 0

and αK > 0. All we need to do is to �nd a combination of parameters that work to prove that

the CRS speci�cation can be consistent with a production function that is DRS and the �rm has175

market power. Here, we list a series of numerical examples that illustrate the claim. For each

case, we specify a set of plausible elasticity, ε, and share (in the production function, αK and αE)

parameters, and then solve for the required γ that solves equation (16) (and the corresponding

coe�cients on B and K in the optimized operating pro�t function):

Example #1: ε = −2, αK = 0.3, aE = 0.3:180

γ = 0.70 so that coef. on B = 0.82 and coef. on K = 0.18
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Example #2: ε = −10, αK = 0.3, aE = 0.3:

γ = 0.46 so that coef. on B = 0.63 and coef. on K = 0.37

Example #3: ε = −2, αK = 0.7, aE = 0.1:

γ = 0.60 so that coef. on B = 0.63 and coef. on K = 0.37

Example #4: ε = −100, αK = 0.5, aE = 0.1:

γ = 0.406 so that coef. on B = 0.45 and coef. on K = 0.55

Example #5: ε = −2, αK = 0.7, aE = 0.3:

γ = 0.50 so that coef. on B = 0.59 and coef. on K = 0.41

All of these cases illustrate combinations of parameter values consistent with a case in which the185

speci�cation of the �rm's technology exhibits DRS in a subset of the inputs, the �rm has market

power, and the resulting operating pro�t function exhibits CRS.

2.2 Operating Pro�t Function Estimation

Obtaining consistent estimates of production/operating pro�t function parameters is challenging

due to the simultaneity problem generated by the relationship between productivity and input190

demands. When subject to productivity shocks, �rms respond by expanding their level of output

and by demanding more inputs; negative shocks, on the other hand, lead to a decline in both

output and demand for inputs. The positive correlation between the observable input levels and the

unobservable productivity shocks is a source of bias in ordinary least squares (OLS) estimates. The

applied economics literature has proposed the use of control function approaches to overcome this195

simultaneity problem. Olley and Pakes (1996) (henceforth OP) proposes a two-step approach that
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uses investment data to proxy for productivity.3 One downside of their approach is that they assume

that labor inputs are non-dynamic and therefore inconsistent with costly adjustments. Ackerberg,

Caves, and Frazer (2015) (henceforth ACF) re�nes their approach and propose a methodology that

allows labor to be costly to adjust.200

Here, we follow the methodologies by Olley and Pakes (1996) and Ackerberg, Caves, and Frazer

(2015) to estimate the parameters of a Cobb-Douglas operating pro�t function using all four inputs:

physical capital, labor, knowledge and brand capital.4 We use both revenue (sales in Compustat)

and value added (sales-cogs in Compustat).

Table 2 shows the parameter estimates using both methodologies for all �rms together and for205

low and high skill �rms separately. Overall, the coe�cient estimates add up to a number very close

to one (see last row, highlighted in bold). This result con�rms that the CRS assumption of the

operating pro�t function constitutes an empirically reasonable approximation.

3 Robustness Checks

To check the robustness of our main �ndings and, in particular, the importance of non-physical210

capital inputs for �rm value, we re-estimate the model for di�erent data samples and across several

perturbations of the empirical procedures. First, we show how the results are impacted by assuming

alternative adjustment costs functions that allow for asymmetric costs or a curvature parameter

that is di�erent from two (i.e., non-quadratic). Second, we show how the results change for di�erent

test assets, an alternative estimation method and across di�erent data samples. Speci�cally, we215

estimate the model using: a larger number of portfolios, an alternative industry classi�cation as

portfolios, �rm-level data (as opposed to performing the estimation using portfolios), the Euler

equation approach using �rm-level data, the sub-sample of �rms that were excluded from the main

sample due to missing (or always zero) R&D expenses data. Finally, we show the results from

additional robustness checks (which includes tests using an alternative measure of intangible capital220

such as organization capital, following Eisfeldt and Papanikolaou 2013).

3Levinsohn and Petrin (2003)is another in�uential approach. Their approach requires materials data that we do
not observe.

4We use the stata module prodest which allows for both methodologies. See
https://ideas.repec.org/c/boc/bocode/s458239.html.
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3.1 Alternative Adjustment Costs Functions

In the baseline model, we specify the adjustment costs function to be symmetric and quadratic. In

this section, we relax these assumptions and show that they have a small impact on the model �t

and on the conclusions from the model. In Section 3.1.1 we allow for asymmetric adjustment costs225

and in Section 3.1.2 we freely estimate the curvature of the adjustment costs function .

3.1.1 Asymmetric Adjustment Costs

In the baseline model, we specify a symmetric adjustment costs function for parsimonious reasons

and to avoid parameter proliferation. This assumption may be at odds with some results in the large

investment and labor demand literature, however. For example, Abel and Eberly (1994) and Abel

and Eberly (1996) show that allowing for asymmetry in physical capital adjustment costs (e.g., due

to investment irreversibility) improves the ability of an otherwise standard neoclassical investment

model to explain investment dynamics. Thus, here we consider a more �exible adjustment costs

function where we allow the costs of adjusting each input to be di�erent:

Cit = θP
v2P

[
exp

(
−vP IPit

KP
it

)
+ vP

IPit
KP

it
− 1
]
KP
it + θL

v2L

[
exp

(
−vLHit

Lit

)
+ vL

Hit

Lit
− 1
]
WitLit

+ θK
v2K

[
exp

(
−vP IKit

KK
it

)
+ vP

IKit
KK

it
− 1
]
KK
it + θB

v2B

[
exp

(
−vB IBit

KB
it

)
+ vB

IBit
KB

it
− 1
]
KB
it .

(17)

This function is smooth and homogeneous of degree one, hence it satis�es the requirements for

the �rm value decomposition result in Subsection 3.3. To help its interpretation, Figure 1 plots this

function for the one-capital input case. The parameter θi is similar to the single parameter in the230

baseline speci�cation and controls the size of the adjustment costs of input i. The novel parameter

here is vi which controls the degree of asymmetry of the function. When vi > 0, it is more costly to

disinvest (partial irreversibility) than it is to invest. When vi < 0, it is more costly to invest than

it is to desinvest. When vi → 0, the function converges to our standard quadratic adjustment cost

speci�cation.5 Thus, by estimating the parameter vi, we allow the data to uncover the importance235

of asymmetric adjustment costs for our results. Note that, due to the way in which we calculate

investment in the intangible capital inputs, the gross investment rates of these inputs are never

negative. Thus, even though the asymmetry parameters for the intangible capital inputs can be

5Using l'Hopital's rule, lim
v→0

θ
v2

[
exp

(
−v I

K

)
+ v I

K
− 1

]
K= θ

2

(
I
K

)2
K.
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Figure 1: Asymmetric Adjustment Costs Function

This �gure shows the asymmetric adjustment costs function speci�cation C = θ
v

[
exp

(
−v I

K

)
+ v I

K
− 1

]
K, using a

slope adjustment cost parameter θ = 1, a capital stock of K = 1, with curvatures of ν = −5 (solid) and ν = 5
(dashed). When v > 0 it is more costly to desinvest than to invest (to capture irreversibility), and vice versa when
v < 0.
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estimated, they should be interpreted with caution because the identi�cation of the functional form

of the adjustment costs of these inputs is only based on the positive side of investment. Hence,240

in what follows, we focus most of our discussion on the asymmetry parameters v for the physical

capital and labor inputs.

Table 3 reports the parameter estimates and �t of the model with asymmetric adjustment costs.6

The evidence of asymmetry for physical capital is not strong in our sample. In low-skill industries,

the asymmetry parameter is positive, vK = 0.21, consistent with some irreversibility of investment,245

but in high-skill industries the parameter is negative, vK = −0.25. In both types of industries,

however, we cannot reject the hypothesis that this asymmetry parameter is zero, that is, that the

physical capital adjustment costs function is symmetric, as in the baseline speci�cation. For labor,

6Note that the estimation using this adjustment cost speci�cation can no longer be performed using linear OLS.
Here, minimizing the objective function in equation (23) in the main draft requires non linear least squares (NLLS)
estimation. We compute bootstrapped standard errors that are robust to cross-sectional and time-series correlation
using 20% of the sample with replacement. As shown by Cameron and Miller (2010) bootstrapping controls for the
fact that errors can be correlated across portfolios and within portfolios over time.
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there is evidence of some degree of irreversibility in high-skill industries with vL = 2.16 (and this

value is more than 4.3 standard errors from zero), but not in low-labor-skill industries with vL = 1.19250

(but we cannot reject the hypothesis that this parameter is zero). Thus, in high-skill industries, it

is more costly to decrease the labor force (i.e., �re workers) than it is to increase it.

Turning to the analysis of the impact on model �t, Table 3 shows that, by using the asymmetric

adjustment costs function speci�cation, the time-series R2 of the model increases by 2 percentage

points relative to the baseline quadratic adjustment cost speci�cation, from 38% to 40%. The255

improvement in high-skill industries is slightly larger. In high-skill industries, using the asymmetric

adjustment costs function speci�cation, the time-series R2 of the model increases by 6 percentage

points relative to the baseline quadratic adjustment cost speci�cation, from 60% to 66%. This

improved �t comes mostly from the asymmetry in the labor adjustment costs discussed above.

Taken together, allowing for asymmetry in the adjustment costs function seems to have only a260

small impact on the quality of the model �t in our sample, especially in low-skill industries.

3.1.2 Flexible Curvature Adjustment Costs

In the benchmark speci�cation, for parsimonious reasons, we �x the curvature of the adjustment

costs function to be equal to two and only estimate the slope adjustment cost parameter. As

a robustness check, in this appendix, we consider a more �exible adjustment costs speci�cation265

that allows for the joint estimation of curvature and slope. Speci�cally, we consider the following

functional form for the adjustment costs function:

Cit =
θP
νP

∣∣∣∣ IPitKP
it

∣∣∣∣νP KP
it +

θL
νL

∣∣∣∣Hit

Lit

∣∣∣∣νLWitLit +
θK
νK

∣∣∣∣ IKitKK
it

∣∣∣∣νK KK
it +

θB
νB

∣∣∣∣ IBitKB
it

∣∣∣∣νB KB
it , (18)

in which Wit is the wage rate (which the �rm takes as given), θP , θL, θK , θB > 0 are the slope

adjustment costs parameters, and νP , νL, νK , νB > 1 are the curvature adjustment costs parameters.

Note that this speci�cation reduces to the quadratic functional form we use in the benchmark model270

when the curvature parameters are equal to two. The absolute value speci�cation of the adjustment

costs function allows for negative investment rates and improves the stability of the estimation of the

curvature parameters.7 This functional form generalizes the one-physical-capital input functional

7When the curvature parameters are greater than one, vi > 1, this function is continuous along its entire domain
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Table 3: Parameter Estimates and Model Fit with an Asymmetric Adjustment Cost Speci�cation
This table reports the parameter estimates and measures of �t for the model with adjustment costs function that
allows for asymmetric costs. The estimation uses 40 portfolios sorted based on proxies of the lagged values of the
inputs (10 portfolios for each input). θP , θL, θK and θB are, respectively, the physical capital, labor, knowledge
capital, and brand capital adjustment cost parameters. νP , νL, νK and νB are, respectively, the physical capital,
labor, knowledge capital and brand capital asymmetry adjustment cost parameters. s.e. stands for bootstrapped
standard errors. XS − R2 is the cross-sectional R2, TS − R2 is the time-series R2, and m.a.e./V R is the mean
absolute valuation error scaled by the absolute value of the ratio. Model-implied input-shares (µ) are computed at
the aggregate-level according. CX/Y is the ratio (in percent) of the implied input adjustment costs-to-sales ratio,
computed as the time series average of the cross sectional median of this value.The sample consists of �rm-level
annual data from 1975 to 2016.

All Firms Low Skill High Skill

(1) (2) (3)

Parameter estimates

Slope

θP 2.33 4.45 3.02

s.e. [1.32] [2.31] [1.42]

θL 15.21 9.32 13.41

s.e. [1.54] [2.95] [1.28]

θK 18.19 30.29 16.94

s.e. [1.87] [6.58] [1.70]

θB 1.42 29.17 0.45

s.e. [2.94] [5.86] [2.14]

Asymmetry

νP -0.37 0.21 -0.25

s.e. [0.28] [0.79] [0.28]

νL 2.55 1.19 2.16

s.e. [0.56] [1.29] [0.50]

νK 1.73 2.31 1.47

s.e. [0.57] [1.49] [0.51]

νB -3.57 9.32 -4.96

s.e. [2.49] [2.15] [2.00]

Model �t

XS −R2 0.94 0.90 0.94

TS −R2 0.67 0.40 0.66

m.a.e./V R 0.20 0.31 0.20

Firm-value decomposition (in %)

µ̄P : Physical capital 31.87 38.48 31.76

µ̄L : Labor 20.97 13.81 19.04

µ̄K : Knowledge capital 39.28 22.29 43.93

µ̄B : Brand capital 7.88 25.42 5.27

Realized adjustment costs (in %)

CP/Y : Physical capital 1.46 1.44 2.13

CL/Y : Labor 7.58 2.98 7.58

CK/Y : Knowledge capital 12.41 3.21 15.74

CB/Y : Brand capital 0.31 2.56 0.11
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form speci�cation used in BXZ to multiple inputs.8 Finally, note that this functional form also

assumes symmetry across positive and negative adjustments.9275

The adjustment costs function in equation (18) implies that the shadow prices of the capital

inputs are given by:

qPit ≡ 1 + (1− τt)θP
∣∣∣∣ IPitKP

it

∣∣∣∣νK−1

sign

(
IPit
Kit

)
(19)

qLit ≡ (1− τt)θL
∣∣∣∣Hit

Lit

∣∣∣∣νL−1

sign

(
Hit

Lit

)
Wit (20)

qKit ≡ (1− τt)

[
1 + θK

∣∣∣∣ IKitKK
it

∣∣∣∣νK−1

sign

(
IKit
KK
it

)]
(21)

qBit ≡ (1− τt)

[
1 + θB

∣∣∣∣ IBitKB
it

∣∣∣∣νB−1

sign

(
IBit
KB
it

)]
. (22)

We use the sign function to express the equilibrium shadow prices of each of the capital inputs in

a compact manner, that is, using one equation, instead of a piece-wise function. This is because,

given the absolute value speci�cation, the signs associated with the investment and hiring rate terms280

switch depending on whether the input-speci�c investment or hiring rate is positive or negative.

Using these shadow prices, as in the benchmark model, we can write the �rm's valuation ratio as:

V Rit = qPit
KP
it+1

Ait+1
+ qLit

Lit+1

Ait+1
+ qKit

KK
it+1

Ait+1
+ qBit

KB
it+1

Ait+1
. (23)

The left-hand side (LHS) of equation (23) can be directly measured in the data from equity price

data and debt data (and measures of the capital stocks). The right hand side (RHS) of equation

(23) is the predicted valuation ratio from the model, V̂ Rit, which depends on the model parameters.285

Table (4) columns (1) to (3) displays the estimated parameters for slope and curvature for the

model with three capital inputs and labor in the pooled sample (all �rms), and for low- and high-

skill industries separately. Looking at the estimated curvature parameters, one can note that the

including at zero since the left and right derivatives at zero coincide. See also Kogan and Papanikolaou (2012) for a
similar speci�cation in the context of a one-physical-capital input model.

8Although not explicitly stated in their paper, BXZ also use an absolute value speci�cation to deal with negative
investment rates observed in the data.

9Note that the estimation can no longer be performed using OLS. Therefore we use non-linear least squares (NLLS)
and then compute bootstrapped standard errors that are robust to cross-sectional and time-series correlation using
20% of the sample with replacement. As shown by Cameron and Miller (2010), bootstrapping controls for the fact
that errors can be correlated across portfolios and within portfolios over time.
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values are around two, empirically justifying the simpli�cation used in the benchmark model. Note

also that, comparing the �t of this model with the quadratic version in Table 3 columns (1) to (3)290

in the main draft, we can conclude that estimating the curvature does not signi�cantly improve the

model �t. Table 4 columns (4) to (6) displays the estimated parameters for slope and curvature for

the model with only physical capital in the pooled sample (all �rms), and for the low- and high-skill

industries separately. Comparing with the quadratic cost counterpart in Table 3 columns (4) to (5)

we see that allowing for curvature estimation also only marginally improves the �t of the model.295

The last two panels in Table (4) report the input-share decomposition and adjustment costs

using the speci�cation in equation (18) and the previous parameter estimates. Overall, the message

is quite similar to the one in the main draft, namely, that physical capital accounts for a relatively

small share of �rm value, and that labor and intangible capital are important to properly decompose

the market value of the �rm.300

3.2 Alternative Test Assets, Estimation Method, and Samples

In the baseline estimation, we use 40 portfolios (10 portfolios for each of the 4 portfolio sorts) as

test assets. In this section we show how the selection of test assets (portfolios), estimation method

and sample a�ect the model �t and conclusions. For parsimonious reasons, we focus here on the

estimation results across all �rms. In Section 3.2.1 we estimate the model using a larger number305

of portfolios than in the baseline estimation. In Section 3.2.2, we consider an alternative industry

classi�cation and a di�erent sorting variable for the portfolios. In Section 3.2.3 we estimate the

model directly using �rm-level data (as opposed to performing the estimation using portfolios)

and targeting the valuation ratio moment, as in the baseline estimation. Section 3.2.4 repeates the

previous estimation exercise also using �rm-level data but now using the investment Euler equations310

as the target moments instead of the valuation ratio (and hence, it does not use any asset price

data). Finally, in Section 3.2.5 we re-estimate a restricted version of the model without knowledge

capital using the sub-sample of �rms that were excluded from the main sample due to missing (or

always zero) R&D expenses data.
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Table 4: Parameter Estimates with Flexible Curvature
This table reports estimation results and measures of �t for the model with the curvature estimation for the benchmark
model and also the one-physical capital input model. The estimation uses forty portfolios based on the lagged
investment/hiring (ten of each type of input). θP , θL, θK and θB are respectively, the physical capital, labor,
knowledge capital and brand capital slope adjustment costs parameters. νP , νL, νK and νB are, respectively, the
physical capital, labor, knowledge capital and brand capital curvature adjustment costs parameters. s.e. stands for
bootstrapped standard errors. m.a.e./|V R| is the mean absolute valuation error scaled by the absolute value of the
ratio. The value that is attributed to each input (µ) is presented in the third panel. The second panel report the
costs, where CX/Y is the ratio (in percent) of the implied input adjustment costs-to-sales ratio. The sample is annual
data from 1975 to 2016.

Baseline KP

All Low High All Low High

Firms Skill Skill Firms Skill Skill

(1) (2) (3) (4) (5) (6)

Parameter Estimates

Slope

θP 2.88 3.40 3.11 28.37 17.35 29.13

s.e. [1.11] [1.33] [1.12] [0.88] [1.62] [0.87]

θL 10.16 4.89 10.73

s.e. [1.04] [1.34] [1.08]

θK 9.12 12.44 9.26

s.e. [1.32] [5.43] [1.35]

θB 4.23 4.48 4.17

s.e. [3.66] [4.13] [4.14]

Curvature

νP 2.45 2.21 2.41 1.95 1.64 1.94

s.e. [0.16] [0.42] [0.17] [0.04] [0.08] [0.05]

νL 1.97 1.42 2.09

s.e. [0.13] [0.21] [0.14]

νK 1.68 1.65 1.7

s.e. [0.10] [0.28] [0.10]

νB 2.34 1.49 2.56

s.e. [0.43] [0.48] [0.44]

Model Fit

XS- R2 0.93 0.90 0.93 0.73 0.58 0.74

TS- R2 0.62 0.42 0.61 0.23 0.12 0.20

m.a.e/VR 0.22 0.31 0.22 0.32 0.37 0.33

Firm value decomposition - Aggregate (in %)

µ̄P : Physical capital 31.06 34.71 30.01 100.00 100.00 100.00

µ̄L : Labor 20.95 22.08 18.43

µ̄K : Knowledge capital 39.93 20.96 45.5

µ̄B : Brand capital 8.06 22.24 6.06

Realized adjustment costs (in % of annual sales)

CP/Y : Physical capital 0.79 0.68 1.09 18.91 13.12 22.22

CL/Y : Labor 6.24 6.48 5.69

CK/Y : Knowledge capital 13.2 3.21 16.89

CB/Y : Brand capital 0.34 2.09 0.23
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3.2.1 Changing the Number of Portfolios315

Here, we consider 80 portfolios (20 portfolios for each portfolio sort) as test assets, and investigate

the impact of changing the number of portfolios on the results. Table 5, column (2) reports the

estimation results using this larger number of portfolios as test assets. The point estimates appear

to be very similar in magnitude to the point estimates in the baseline estimation. As a result, the

model �t and model-implied �rm-value decomposition are all quite similar to those obtained in the320

baseline estimation of the model. This analysis suggests that the point estimates in the baseline

estimation are robust to a reasonable variation of the number of portfolios used in the estimation.
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3.2.2 Alternative Portfolio Sorts and Industry Classi�cation

In the baseline analysis we estimate the model using portfolios sorted on proxies for the �rms' lagged

values of each input. In addition, we split the sample into low- and high-skill industries according

to the average share of high-skilled workers in each industry. Naturally, the model can be estimated

using other portfolio sorts, and also using other industry classi�cations.330

To check the robustness of our main �ndings to both the portfolio sorting variable and the

industry classi�cation, here we report the estimation results using two alternative procedures. In

the �rst procedure, we estimate the model parameters using 15-industry portfolios following the 17-

industry Fama and French industry classi�cation (we exclude two industries due to data availability),

instead of sorting the portfolios on proxies for the �rms' lagged values of each input.10 The results335

from this analysis allow us to check the robustness of the �ndings to the portfolio sorting variable(s).

Implicit in this analysis is the assumption that the adjustment costs technology is similar across

these industries (we estimate only one set of parameters for all �rms). Thus, we also consider a

second alternative procedure in which we estimate the model parameters using the same sorting

variables of the baseline estimation but perform the estimation separately within each Fama and340

French industry. The results from this analysis allow us to check the robustness of the �ndings to

the industry classi�cation. To save space, given the large set of results obtained using this second

procedure, we discuss here a brief summary of the main results and report the complete analysis

using this procedure in Subsection 4.2 in this appendix. Further, we report only the input-shares

computed using the aggregate input-share measure.345

Table 5, column (3) reports the estimation results using the 15-industry portfolios. The point

estimates are similar to those obtained in the baseline estimation. The only noticeable di�erences

10We use the 17-industry classi�cation posted on Kenneth French's website. We exclude the industries 14�Utilities
and 16�Financial �rms due to data availability and sample restrictions. We are left with the following �fteen
industries: 1�Food, 2�Mines (Mining and Minerals), 3�Oil (Oil and Petroleum Products), 4�Clths (Textiles, Apparel
& Footware), 5�Durbl (Consumer Durables), 6�Chems (Chemicals), 7�Cnsum (Drugs, Soap, Perfumes, Tobacco), 8�
Cnstr (Construction and Construction Materials), 9�Steel (Steel Works, etc.), 10�FabPr (Fabricated Products), 11�
Machn (Machinery and Business Equipment), 12�Cars (Automobiles), 13�Trans (Transportation), 15�Rtail (Retail
Stores), 17�Other.
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are the slope coe�cient on brand capital that is larger than in the baseline case (θB = 11.09 here

versus θB = 3.24 in the baseline estimation), and the slope coe�cient on labor that is smaller than

in the baseline case (θL = 6.98 here versus θL = 11.26 in the baseline estimation). As a result, the350

estimated share of brand capital for �rm value is slightly higher here than in the baseline model

(µB = 16.87 here versus µB = 8.83 in the baseline estimation), while the estimated share of labor

capital for �rm value is slightly lower here than in the baseline model (µL = 12.39 here versus

µL = 8.83 in the baseline estimation). More important, the results con�rm the importance of

the non-physical capital inputs for �rm value. Similar to the baseline estimation, the non-physical355

capital inputs account for roughly 70% of the �rm's market value.

The estimation of the model for the di�erent Fama and French industries provides further

support for the importance of the non-physical capital inputs for �rm value. In Subsection 4.2 in

this appendix we show that although the estimates of the adjustment costs parameters vary across

industries, the importance of the non-physical capital inputs persists. The average share of the non-360

physical inputs ranges from a minimum of 19% in the industry classi�ed as �other�, to a maximum

of 72% in the high-tech industry. In addition, the analysis of the input-shares in each industry and

over time, con�rms that the decline in the share of physical capital and the corresponding increase

in the share of knowledge capital, also observed in the baseline estimation, also persists across the

Fama and French industries. Thus, the decline in the physical-capital share and the increase in the365

knowledge capital share is not driven by changes in the industry composition in the U.S. economy,

but rather seems to be a trend in the overall economy.

3.2.3 Firm-level Estimation

We perform the baseline estimation using portfolio-level moments. Alternatively, we can estimate

equation (24) by ordinary least squares directly on �rm-level data. The advantage of this latter370

approach is that it does not require us to take a stand regarding a particular sorting variable to

create the portfolios. The disadvantage is that this approach is more sensitive to noise in the

�rm-level data.

Table 5, column (4), reports the estimation results using �rm-level data. As expected, the

parameter estimates di�er somewhat from the baseline estimation. The main noticeable di�erence375
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is the smaller estimate of the labor adjustment cost parameter, and the larger estimate of the brand

capital adjustment cost parameter. This suggests that the noise in the labor input may be more

severe than the noise in the other inputs. As a result, the estimated share of labor for �rm value is

smaller here than in the baseline model, and the estimated share of brand capital for �rm value is

larger here than in the baseline model.11380

More important, the estimation results using directly the �rm-level data con�rm the importance

of non-physical capital for �rm value. Similar to the baseline estimation, the non-physical capital

inputs account for a substantial fraction, approximately 62% of �rm value.

3.2.4 Alternative Estimation Method: Firm-Level Euler Equation Approach

Here we check the robustness of our main �ndings to the estimation method, in particular, estimating385

the model parameters using the investment Euler equations as the target moments, instead of the

valuation ratios as in the baseline approach.

Rearranging the �rst order conditions with respect to investment and hiring leads to the following

four Investment-Euler equations (using the same notation as in the main draft):

390

EKp : 1+(1−τt)θP

(
IPit
KP
it

)
= Et

Mt+1

(1 − τt+1)

αP Yit+1

KP
it+1

+
θp

2

(
IPit+1

KP
it+1

)2
+ δPit+1τt+1 + (1 − δPit+1)(1 + (1 − τt+1)θP

(
IPit+1

KP
it+1

)
)



EL : (1−τt)θL
(
Hit

Lit

)
Wit = Et

[
Mt+1

[
(1 − τt+1)

(
αl
Yit+1

Lit+1
+
θL

2

(
Hit+1

Lit+1

)2

Wit+1 −Wit+1

)
+ (1 − δLit+1)(1 − τt+1)θL

(
Hit+1

Lit+1

)
Wit+1

]]

EKK : (1−τt)
[

1 + θK

(
IKit
KK
it

)]
= Et

Mt+1

(1 − τt+1)

αK Yit+1

KK
it+1

+
θK

2

(
IKit+1

KK
it+1

)2
+ (1 − δKit+1)(1 − τt+1)

[
1 + θK

(
IKit+1

KK
it+1

)]
395

11As implied by the model, we restrict the intercept to be zero in the regression analysis. This restriction also
prevents arti�cial improvement of the model �t. In unreported results (available upon request), we �nd that including
an intercept to the �rm-level regression does not signi�cantly improve the model �t.
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To make the labor Euler equation EL stationary, we divide both sides of the equation by current

wagesWit. To facilitate the estimation of the key adjustment cost parameters, we substitute in these

equations the operating pro�t function parameters (the αi's) estimated using the Ackerberg, Caves,400

and Frazer (2015) methodology based on value added (the operating pro�t function estimation

method is discussed in Section 2.2 in this appendix). In addition, we assume a simple discount

factor equal to M = 1/(1 + r) and r = 5%. We then estimate these four Euler equations

using a standard approach (e.g. Whited (1992), among many others). Speci�cally, we replace

the expectation operator with a white noise expectational error, which is uncorrelated with any405

information known at time t. We then estimate each set of Euler equations seperately by the

generalized method of moments (GMM), using a constant as the only instrument (that is, the

identi�cation assumption is that the expectation error is on average zero).

Unlike our baseline portfolio-level estimation approach, �rm-level estimation is more sensitive

to undetected outliers in noisy �rm-level data. To mitigate such concerns we clean further the data410

for the �rm-level Euler equation estimation. In particular, we only include �rms that have: non-

negative sales, a depreciation rate of physical capital less than 100%, a minimum of 5 observations, a

minumum of 50 workers, and minimum capital stocks (physical, knowledge, and brand) of $100, 000.

We also eliminate observations with extreme values of the marginal products of the intangible capital

inputs.12 These data requirements leaves us with 2,088 �rms for the estimation.415

The adjustment cost parameter estimates, and implied �rm value shares and input adjustment

costs, are presented in Table 5 and Table 6 (column 5). We can see that the point estimates of

the adjustment cost parameters are similar to the parameter estimates obtained when we target

the valuation ratio moments also using the �rm-level data (column 4) and also broadly in line with

the other robustness checks reported. As noted above, the �rm-level data is subject to substantial420

12Speci�cally, we eliminate observations in which the marginal product of knowledge capital or brand capital is
more than 20 times the marginal product of physical capital. We note that these variables (including depreciation
rate and sales data) are not directly used in our estimation method, hence these criteria do not a�ect our previous
results.
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noise, so the �rm-level approach is likely to be more a�ected by noise and undetected outliers.

Nevertheles, although the point estimates of the adjustment cost parameters are not identical to

the baseline portfolio estimates, the implied value decomposition, the central result in our draft,

and also the implied magnitude of the input adjustment costs, do not change much relative to the

baseline estimation. In particular, the contribution of the non-physical capital inputs for �rm value425

is quite substantial, roughly 70% (which is similar to the value reported in the main draft).13

While the Euler equation approach is a valid alternative estimation method, in the context of

our application the estimation approach in the main draft has the advantage of being parsimonious,

not requiring the explicit estimation of cash �ows (e.g., the factor share parameters in the operating

pro�t function), nor taking a stand on the stochastic discount factor.14 In addition, our approach430

uses asset price data which we is important in our application because the goal is to understand

�rm valuation in �nancial markets. Finally, our estimation approach using portfolio-level data is

less sensitive to noise in the data.

3.2.5 Alternative Samples435

As discussed in Section 4.4 in the main text, in the main sample, we drop �rms that never report (or

always report zero) R&D expenses. Ignoring these �rms may not be e�cient for the purposes of our

analysis, however, because these �rms may be informative about the importance of the non-physical

capital inputs (labor and brand capital) for �rm value. Thus, here we estimate a (restricted) version

of the model with physical capital, labor, and brand capital only, using the sample of �rms that440

were excluded from the main sample due to missing (or always zero) R&D expenses data. This

alternative sample includes 6, 541 �rms, and 60, 316 �rm-year observations.

Table 5, columns (6), reports the estimation results obtained using this alternative sample of

non-R&D �rms. The model �t is even better than the baseline sample/model. The times-series R2

13The similarity between the point estimates reported in columns 4 (�rm-level targeting the valuation ratio
moments) and column 5 (�rm-level targeting the investment Euler equations) suggests that endogeneity concerns
in the investment-q relationship do not seem to be a major issue in our analysis.

14See, for example, Bond and Van Reenen (2007)) (Section 3) for an interesting analysis of the advantages and
disadvantages of di�erent investment demand estimation approaches. Also, as discussed in the Related Literature
section 2 of the main draft, our approach of using asset price data (valuation ratios) to estimate model parameters
is closely related to previous work in the area (in particular, see Belo, Xue, and Zhang (2013) and Merz and Yashiv
(2007)).
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is 72%, whereas in the baseline sample it is 61%.445

The share of labor ranges is 30.5% , whereas the share of brand capital is 12.9%. The share of

physical capital for non-R&D �rms is signi�cantly higher than in the baseline model: 56.7% here

versus 30.7% in the baseline sample. This higher share relative to the baseline sample is perhaps not

surprising given that, by de�nition, the non-R&D �rms have zero knowledge capital, which (across

most speci�cations) is the non-physical capital input that contributes the most for �rm value in the450

baseline sample. In addition, the �rms that do not perform R&D are likely to be �rms from the

�old economy,� and naturally rely less on innovation and other intangibles, and more on installed

physical capital.

Taken together, the average contribution of the non-physical capital inputs for �rm value in this

alternative sample is still more than 42% of �rms' market value. Although this share is smaller than455

in the baseline model, it is still substantial, thus providing additional support for the importance

of the non-physical capital inputs for �rm value.

3.3 An Alternative Intangible Capital Stock Based on SG&A Data

(Organization Capital)

In the main draft, we measure intangible capital using expenditure data on research and development460

and on advertising. Therefore, to be included in our analysis �rms must report these two types of

expenditures. Here, we consider an alternative measure of intangible capital (organization capital)

that does not di�erentiate between knowledge and brand capital. Speci�cally, we construct a

measure of organization capital based on Selling, General and Administrative (SG&A) expense

data, following Eisfeldt and Papanikolaou (2013). Since this item is more regularly reported we465

can perform the analysis on a larger sample of �rms. Our sample with physical capital, labor and

organization capital has 6,974 �rms and 77,263 observations.

We construct the �rms' stock of organization capital from past expenditures data on SG&A

(Compustat data item XSGA) and using the perpetual inventory method as follows:

KO
t+1 = KO

t (1− δO)
POt+1

POt
+ IOt+1, (24)
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where POt is the BEA price index for consumption expenditures.15470

We set organization capital investment to be equal to 30% of SG&A expenditures following

Peters and Taylor (2017). To implement the law of motion in equation (24) we must choose an

initial stock and a depreciation rate. Using the perpetual inventory method, we set the initial stock

to:

KO
0 =

IO0
gO + δO − πO(1− δO)

,

in which IO0 is the �rm's investment in organization capital in the �rst year in the sample, and πo is475

the average (net) growth rate of the price index for SG&A, which is 3.3% in the sample period used

for the estimation. We let gO be industry-speci�c and set it equal to the average growth rate of the

SG&A investments in that industry; in practice, we consider 10 industry-groups based on the level

of the labor skill level in that industry. As for the organization capital depreciation rate, we use 20%.

Once we have the initial capital stock, we iterate forward using the appropriate depreciation rate,480

SG&A expenses, and investment price index. The investment rate on organization capital is then

given by the ratio of the current period investment and the beginning of the period corresponding

knowledge capital stock IOt /K
O
t .

We estimate the model using a quadratic adjustment costs speci�cation using a sample of ten

portfolios based on each investment/hiring input (total of thirty portfolios). Table 7 �rst panel485

displays the estimated slopes. Column (1), reports the point estimates of the adjustment costs

parameters in the pooled sample. The estimates of the adjustment costs parameters are θP = 1.23

for physical capital, θL = 6.16 for labor, and θO = 9.49 for organization capital. The second panel

displays the model �t. According to the three metrics considered here, the model performs well �

both in the time-series and cross-section dimensions � when estimated across all �rms. Columns (2)490

and (3) display the estimated slopes and �t for low- and high skill industries. All the adjustment

costs parameters are positive and we can reject the hypothesis that these parameters are zero.

The estimate of the slope adjustment costs parameter for labor and organization capital increase

with the average labor-skill of the industry, from θL = 2.60 and θO = 5.49 in low-skill industries

to θL = 6.79 and θO = 10.60 in high-skill industries. Going in the opposite direction, the slope495

15Speci�cally, we use the annual series �Personal Consumption Expenditures: Chain-type Price Index, Index
2009=100� (DPCERG3A086NBEA) provided by the BEA.
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adjustment cost parameters for physical capital with the average labor-skill level of the industry.

The model �t is particularly good is capturing the time-series variation in the valuation ratios in

high-skill industries, with a time series R2 of 63%, whereas the time series �t in the low skill industry

is more modest, R2 of 44%.

The last two panels in 7 use the estimated parameters to calculate the input-share decomposition500

and adjustment costs. While using SG&A to measure intangible capital does not allow us to

di�erentiate across the two types of intangible (brand and knowledge), overall the decomposition

across physical capital, labor and intangible capital stays similar. Using the aggregate input-share

measure, in the pooled sample, physical capital accounts for about 32% of �rm value while labor

accounts for 16.83% and organization capital for 51.05%. For �rms in low-skill industries, labor505

accounts for about 10% of �rms' market value while in high skill industries this number rises to

15.40%. While organization capital accounts for a larger share of �rms' value in high skill industries

(52% versus 43%), physical capital accounts for more value in low-skill industries (46.88% versus

32.65%). The last panel show the (average) median adjustment costs in each input. Adjusting labor

is more expensive in high-skill (4.27% of annual sales ) than in low-skill industries (1.84% of annual510

sales). Organization capital is the most expensive input to adjust, accounting for almost 11% of

annual sales in the pooled sample.
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Table 7: Model Estimation Using Organization Capital (SG&A)

This table reports estimation results and measures of �t for the sample of �rms that reports SG&A. The estimation
uses thirty portfolios based on the lagged investment/hiring (ten based on each type of input). The estimation is done
using the cross-sectional average aggregation method and LS methodology. The �rst panel reports the estimation
results. θP , θL, and θO are respectively, the physical capital, labor, organization capital slope adjustment costs
parameters. s.e. stands for Newey-West standard errors with three lags. The second panel reports measures of �t,
m.a.e./|V R| is the mean absolute valuation error scaled by the absolute value of the ratio. The sample is annual data
from 1975 to 2016. The last two panels report input-shares and adjustment costs for this sample using the parameter
estimates.

Baseline

All Low High

Firms Skill Skill

(1) (2) (3)

Parameter Estimates

Slope

θP 1.23 3.80 1.79

s.e. [1.09] [0.98] [0.88]

θL 6.16 2.60 6.79

s.e. [0.86] [0.75] [0.81]

θO 9.49 5.49 10.60

s.e. [0.83] [0.62] [0.84]

Model Fit

XS- R2 0.88 0.84 0.90

TS- R2 0.62 0.44 0.63

m.a.e/VR 0.24 0.27 0.24

Firm value decomposition

Aggregate (in %)

µ̄P : Physical capital 32.12 46.88 32.65

µ̄L : Labor 16.83 9.99 15.40

µ̄O : Org. capital 51.05 43.13 51.95

Realized adjustment costs

(in % of annual sales)

CP/Y : Physical capital 0.60 1.20 1.14

CL/Y : Labor 4.04 1.84 4.27

CO/Y : Org. capital 10.99 4.88 14.5
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3.4 Alternative Intangible Capital Depreciation Rate Speci�cations

Di�erently from tangible capital which depreciates due to physical decay or wear and tear, R&D

depreciates because its contribution to a �rm's pro�t declines over time. The main driving forces515

for such depreciation are obsolescence and competition (Hall (2007)).

While for physical capital � due to tax bene�ts � �rms report the (accounting) depreciation (and

hence we can compute the depreciation rate), for intangible capital inputs we need to estimate it.

Depreciation rates are important for our analysis because we do not observe stocks of intangible

capital and hence we use the perpetual inventory method together with expenditure data to calculate520

stocks of knowledge and brand capital.

For the knowledge capital depreciation rate, we use the industry-level rates of R&D assets based

on the BEA-NSF data estimated by Li (2012) and reported in Table 4, column 3 for each industry.

Li's paper develops a forward looking pro�t model with gestational lags to derive the depreciation

rates. This strategy levers out Compustat, BEA and NSF data to estimate � for the �rst time � a525

complete set of R&D depreciation rates for major U.S. high-tech industries. Table 2 of Li's paper

shows that her estimates are largely in line with many single industry studies. For those industries

not reported by Li (2012), we follow Peters and Taylor (2017) and use 15%. For brand capital we

follow Vitorino (2014) and set depreciation rate at 20%.

Since the depreciation rates a�ect the capitalization of the stocks, and hence the estimated530

adjustment costs and value shares, here we perform robustness tests regarding the depreciation

rates. We redo our analysis for three di�erent levels of depreciation of knowledge capital � (0.5, 1

and 1.5) times the value used in the calculations of the results in the paper � and brand capital (10%,

20%, 30%). This leads to 9 possible combinations of the knowledge and brand capital depreciation

rates. The number reported in the center of each table, in bold, is equivalent to the combination535

used in the speci�cation in the main draft.

Table 8 shows the median of the knowledge and brand investment rates and input stocks.

Because changes in the depreciation rates of intangible capital change the scale of the inputs, we

also report the scaled physical capital and labor stocks. Table 9 shows the parameter estimates

and Table 10 the model �t. An decrease in depreciation rate leads to lower investment rate of that540

particular input (because we consider gross investment) and higher stock of the input, as one can
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observe from the descriptive statistics in Table 8.

Although the estimated parameters are very similar, comparing across rows or columns we

observe that � especially for knowledge and brand capital parameters � this lower (higher) investment

rate leads to lower (higher) adjustment cost parameters. The lower parameters and investment rates545

as a result of the lower depreciation rate pulls adjustment cost and shares down. But this decrease

in the depreciation rates leads to larger stocks of the input thus pulling shares and adjustment

costs up. The opposite direction of these components generates stability in the shares reported

in Table 11. Finally, Table 12 displays the adjustment costs estimated as a share of sales, as the

size of the adjustment varies with depreciation rate (lower depreciation, smaller investment), the550

costs for knowledge and brand mechanically ends up having larger variation. To allow for a proper

comparison, we calculate in Table 13 the adjustment costs, evaluated at the same investment rate

of 10%. The table shows that the adjustment costs are stable.

Overall, the results reported here show that the value decomposition and adjustment costs

estimates that we report in the main draft are robust to reasonable perturbations of the depreciation555

rates used for the intangible capitals.
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Table 8: Descriptive Statistics

This table reports the time-series average of the cross-sectional median, of selected characteristics of the �rm level data
across all �rms in the economy for the di�erent assumptions about the intangible capital depreciation rates. Across
columns we vary the depreciation rate of brand capital from 10% to 30%, and across rows we vary the depreciation
rate of knowledge capital, from 7% to 23%. The center measure in bold is equivalent to the speci�cation used in the
main draft.

0.10 0.20 0.30

IKit /K
K
it

0.07 0.19 0.19 0.19

0.15 0.28 0.28 0.28

0.23 0.37 0.37 0.37

IBit /K
B
it

0.07 0.16 0.25 0.35

0.15 0.16 0.25 0.35

0.23 0.16 0.25 0.35

KP
it /Ait

0.07 0.32 0.35 0.37

0.15 0.38 0.42 0.45

0.23 0.42 0.47 0.50

(Wit−1Lit)/Ait

0.07 0.48 0.51 0.53

0.15 0.57 0.61 0.64

0.23 0.64 0.69 0.73

KP
it /Ait

0.07 0.44 0.48 0.50

0.15 0.35 0.38 0.40

0.23 0.28 0.31 0.33

KP
it /Ait

0.07 0.13 0.09 0.06

0.15 0.15 0.10 0.08

0.23 0.17 0.12 0.09
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Table 9: Parameter Estimates

This table reports the parameter estimates for all �rms, low and high skill using the baseline model speci�cation for
the di�erent assumptions on depreciation rates. Across columns we vary the depreciation rate of brand capital from
10% to 30%, and across rows we vary the depreciation rate of knowledge capital, from 7% to 23%. θP , θL, θK and
θB are, respectively, the physical capital, labor, knowledge capital, and brand capital adjustment cost parameters.
The center estimate in bold is equivalent to the speci�cation in the main draft.
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Table 10: R2 across Depreciation Rates

This table reports the measure of �t estimates (R2) for all �rms, low and high skill using the baseline model
speci�cation for the di�erent assumptions on depreciation rates. Across columns we vary the depreciation rate
of brand capital from 10% to 30%, and across rows we vary the depreciation rate of knowledge capital, from 7% to
23%. The center estimate in bold is equivalent to the speci�cation in the main draft.

All Firms Low Skill High Skill

0.10 0.20 0.30 0.10 0.20 0.30 0.10 0.20 0.30

0.07 0.94 0.94 0.94 0.07 0.94 0.94 0.94 0.07 0.93 0.94 0.94

0.15 0.94 0.94 0.94 0.15 0.95 0.95 0.94 0.15 0.94 0.94 0.94

0.23 0.95 0.94 0.94 0.23 0.95 0.94 0.94 0.23 0.94 0.94 0.94
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Table 11: Shares across Depreciation Rates

This table reports the model-implied input-shares (µ) for all �rms, low and high skill using the baseline model
speci�cation for the di�erent assumptions on depreciation rates. Across columns we vary the depreciation rate of
brand capital from 10% to 30%, and across rows we vary the depreciation rate of knowledge capital, from 7% to 23%.
The center estimate in bold is equivalent to the speci�cation in the main draft.

All Firms Low Skill High Skill

0.10 0.20 0.30 0.10 0.20 0.30 0.10 0.20 0.30

Firm-value decomposition - Aggregate (in %)

µP : Physical µP : Physical µP : Physical

0.07 30.27 30.73 30.30 0.07 38.47 38.07 38.94 0.07 30.45 30.92 30.43

0.15 30.64 30.36 30.46 0.15 38.49 40.16 40.39 0.15 29.77 29.91 30.18

0.23 30.27 29.62 29.70 0.23 37.92 39.08 39.79 0.23 29.15 29.50 29.89

µL : Labor µL : Labor µL : Labor

0.07 20.34 20.46 20.79 0.07 13.07 14.19 14.05 0.07 18.18 18.50 18.72

0.15 21.90 22.53 22.54 0.15 13.35 14.33 14.21 0.15 20.42 20.85 20.64

0.23 22.54 23.30 23.30 0.23 13.53 14.64 14.68 0.23 21.47 21.51 21.33

µK : Knowledge µK : Knowledge µK : Knowledge

0.07 40.18 40.33 40.47 0.07 23.30 22.97 22.38 0.07 44.75 44.84 44.95

0.15 38.00 38.28 38.26 0.15 21.86 20.34 20.67 0.15 43.05 43.23 43.14

0.23 37.02 37.51 37.54 0.23 20.87 20.00 20.16 0.23 42.32 42.47 42.51

µB : Brand µB : Brand µB : Brand

0.07 9.21 8.47 8.44 0.07 25.16 24.77 24.63 0.07 6.62 5.74 5.89

0.15 9.46 8.83 8.73 0.15 26.30 25.17 24.74 0.15 6.76 6.02 6.04

0.23 10.17 9.58 9.46 0.23 27.68 26.28 25.37 0.23 7.07 6.52 6.27

Firm-value decomposition - Average (in %)

µP : Physical µP : Physical µP : Physical

0.07 22.39 22.60 22.08 0.07 40.88 40.27 41.29 0.07 22.03 22.26 21.77

0.15 22.43 21.85 21.90 0.15 41.18 42.64 42.83 0.15 21.01 20.91 21.13

0.23 22.02 20.98 21.01 0.23 40.64 41.58 42.38 0.23 20.20 20.32 20.61

µL : Labor µL : Labor µL : Labor

0.07 24.02 23.99 24.38 0.07 16.48 17.94 17.76 0.07 21.38 21.66 21.88

0.15 26.01 26.61 26.62 0.15 17.00 18.14 17.95 0.15 23.94 24.32 24.10

0.23 26.98 27.75 27.76 0.23 17.39 18.67 18.63 0.23 25.23 25.22 25.01

µK : Knowledge µK : Knowledge µK : Knowledge

0.07 49.13 48.90 49.03 0.07 25.73 25.23 24.66 0.07 53.05 52.79 52.91

0.15 47.00 46.84 46.81 0.15 23.92 22.19 22.64 0.15 51.52 51.36 51.28

0.23 46.01 46.15 46.15 0.23 23.00 21.86 21.96 0.23 50.86 50.76 50.77

µB : Brand µB : Brand µB : Brand

0.07 4.45 4.51 4.52 0.07 16.91 16.56 16.30 0.07 3.54 3.29 3.45

0.15 4.56 4.70 4.67 0.15 17.89 17.03 16.58 0.15 3.53 3.41 3.49

0.23 4.99 5.12 5.07 0.23 18.98 17.89 17.04 0.23 3.71 3.70 3.62
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Table 12: Realized Adjustment Costs across Depreciation Rates

This table reports the estimated realized adjustment costs (CX/Y ) for all �rms, low and high skill using the baseline
model speci�cation for the di�erent assumptions on depreciation rates. Across columns we vary the depreciation rate
of brand capital from 10% to 30%, and across rows we vary the depreciation rate of knowledge capital, from 7% to
23%. The center estimate in bold is equivalent to the speci�cation in the main draft.

All Firms Low Skill High Skill

0.10 0.20 0.30 0.10 0.20 0.30 0.10 0.20 0.30

% CP/Y CP/Y CP/Y

0.07 1.17 1.21 1.08 0.07 1.10 0.96 1.04 0.07 2.00 2.04 1.89

0.15 1.03 0.90 0.92 0.15 1.09 1.22 1.22 0.15 1.55 1.50 1.56

0.23 0.88 0.67 0.67 0.23 1.04 1.10 1.15 0.23 1.26 1.30 1.37

CL/Y CL/Y CL/Y

0.07 6.12 6.09 6.16 0.07 2.44 2.60 2.55 0.07 6.25 6.29 6.34

0.15 6.37 6.46 6.45 0.15 2.48 2.61 2.58 0.15 6.70 6.77 6.70

0.23 6.46 6.58 6.56 0.23 2.53 2.68 2.66 0.23 6.92 6.87 6.81

CK/Y CK/Y CK/Y

0.07 6.37 6.28 6.26 0.07 1.63 1.55 1.48 0.07 8.38 8.26 8.25

0.15 10.16 10.05 10.01 0.15 2.62 2.35 2.38 0.15 13.42 13.28 13.24

0.23 14.24 14.17 14.14 0.23 3.63 3.37 3.36 0.23 18.82 18.70 18.68

CB/Y CB/Y CB/Y

0.07 0.09 0.49 0.92 0.07 0.72 1.66 2.63 0.07 0.04 0.31 0.70

0.15 0.08 0.49 0.91 0.15 0.78 1.69 2.64 0.15 0.02 0.30 0.67

0.23 0.13 0.56 1.01 0.23 0.86 1.80 2.72 0.23 0.04 0.36 0.70
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Table 13: Adjustment Costs at 10% Investment

This table reports the estimated adjustment costs (CX/Y ) for a 10% investment rate for all �rms, low and high skill
using the baseline model speci�cation for the di�erent assumptions on depreciation rates. Across columns we vary
the depreciation rate of brand capital from 10% to 30%, and across rows we vary the depreciation rate of knowledge
capital, from 7% to 23%. The center estimate in bold is equivalent to the speci�cation in the main draft.

All Firms Low Skill High Skill

0.10 0.20 0.30 0.10 0.20 0.30 0.10 0.20 0.30

CP/Y CP/Y CP/Y

0.07 0.20 0.20 0.18 0.07 0.43 0.37 0.40 0.07 0.28 0.28 0.26

0.15 0.17 0.15 0.15 0.15 0.42 0.47 0.47 0.15 0.21 0.21 0.22

0.23 0.15 0.11 0.11 0.23 0.40 0.43 0.45 0.23 0.17 0.18 0.19

CL/Y CL/Y CL/Y

0.07 1.81 1.80 1.83 0.07 0.89 0.95 0.94 0.07 1.77 1.78 1.79

0.15 1.89 1.91 1.91 0.15 0.91 0.96 0.95 0.15 1.90 1.92 1.90

0.23 1.92 1.95 1.94 0.23 0.93 0.98 0.98 0.23 1.96 1.94 1.93

CK/Y CK/Y CK/Y

0.07 1.56 1.54 1.53 0.07 0.79 0.75 0.72 0.07 1.81 1.78 1.78

0.15 1.07 1.06 1.06 0.15 0.53 0.47 0.48 0.15 1.30 1.29 1.29

0.23 0.85 0.85 0.84 0.23 0.43 0.40 0.40 0.23 1.03 1.02 1.02

CB/Y CB/Y CB/Y

0.07 0.04 0.08 0.09 0.07 0.35 0.29 0.22 0.07 0.02 0.05 0.05

0.15 0.03 0.08 0.09 0.15 0.38 0.30 0.22 0.15 0.01 0.05 0.05

0.23 0.05 0.09 0.10 0.23 0.42 0.32 0.23 0.23 0.01 0.06 0.05

4 Additional Results

4.1 Heterogeneity in the Adjustment Costs and Shares

In the main text, we summarize the properties of the input-shares in the economy using the aggregate560

and average measures. Here, we add to that analysis by investigating the degree of input-share

heterogeneity in the �rm-level data. Figure 2 shows the box plot (across all years) of the �rm-value

input-shares for the low- and high-skill industries. This �gure reveals that there is substantial

heterogeneity in input-shares both in low- and high-skill industries. For example, for physical

capital, the 25th and 75th percentile in low-skill industries are around 22% and 50%, respectively,565

and in high-skill industries they are around 10% and 30%, respectively. For labor, the 25th and 75th
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percentile in low-skill industries are around 5% and 25%, respectively, and in high-skill industries

they are around 10% and 40%, respectively. For knowledge capital, the 25th and 75th percentile

in low-skill industries are around 10% and 30%, respectively, and in high-skill industries they are

around 25% and 70%, respectively. Finally, for brand capital, the 25th and 75th percentile in570

low-skill industries are around 5% and 30%, respectively, but in high skill industries, the mass of

the share is concentrated at very low levels, all below 10%. Thus, the relatively low share of brand

capital for �rm value in high-skill industries is a consistent feature across all �rms in these industries.

To evaluate the degree of �rm-level heterogeneity in the realized adjustment costs of each input

in the data, Figure 3 shows the box plot of the ratios in the low- and high-skill industries. The575

box plot of the realized adjustment costs in each industry shown in Figure 3 reveals that there is

substantial variation in the realized input adjustment costs across �rms. As expected, given the

strong link between input-shares and adjustment costs, the pattern in the box-plots of the realized

�rm-level realized adjustment costs across industries and inputs seems to mimic the pattern and

the large variation in �rm-level shares of each input reported in Figure 2.580

4.2 Estimation Across the Fama and French Industry Classi�cations

Tables 14 to 18 report the results of the benchmark model estimation (quadratic costs with 40

portfolios) for the Fama-French industries. Note that we perform the estimation separately across

each one of the seven Fama-French industries based on the Fama-French ten industry classi�cation

(we exclude three industries due to data availability), thus allowing us to check the robustness of the585

�ndings to the industry classi�cation. We use fewer industries here than in the previous subection

3.2.2 because we need a su�cient number of observations over all time periods to construct the

portfolios.
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Figure 2: Distribution of Input Market Value Shares

This �gure shows the distribution (box plot) of the estimated �rm-level input input-shares (µ) in high- and low-skill
industries, using the parameter estimates reported in Table 3 in the main text, columns (2) and (3), to obtain the
input-shares. In each box, the central mark is the median, the edges of the box are the 25th and 75th percentiles.
The whiskers extend to the most extreme data points the algorithm considers not to be outliers.
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Figure 3: Distribution of Realized Input Adjustment Costs

This �gure shows the distribution (box plot) of the estimated �rm-level adjustment costs as a fraction of �rms' annual
sales (CX/Y ) in high- and low-skill industries, using the parameter estimates reported in Table 3 in the main text,
columns (2) and (3), to calculate the adjustment costs. In each box, the central mark is the median, the edges of the
box are the 25th and 75th percentiles. The whiskers extend to the most extreme data points the algorithm considers
not to be outliers.
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Table 15: Parameter Estimates and Model Fit Across Fama-French Industries

This table reports estimation results and measures of model �t. The columns show the values for benchmark estimates
for the Fama-French industries. The estimation uses forty portfolios based on the lagged investment/hiring (ten based
on each type of input) for all industries except for the industry �shops� which, due to data limitations, is performed
using 5 portfolios of each. The estimation is done using the cross-sectional average aggregation method and LS
methodology. The �rst panel reports the estimation results. θP , θL, θK and θB are respectively, the physical capital,
labor, knowledge capital and brand capital slope adjustment costs parameters. s.e. stands for Newey-West standard
errors with three lags. The second panel reports measures of �t, m.a.e./|V R| is the mean absolute valuation error
scaled by the absolute value of the ratio. The sample is annual data from 1975 to 2016.

NoDur Durbl Manuf HiTech Shops Hlth Other

(1) (2) (3) (4) (5) (6) (7)

Parameter estimates

θP 6.86 2.81 3.84 4.12 4.51 8.41 5.29

s.e. [0.97] [0.66] [0.89] [0.90] [1.24] [1.01] [1.08]

θL 3.04 4.53 8.10 8.55 6.29 7.00 3.96

s.e. [0.85] [0.55] [0.70] [0.64] [0.85] [0.72] [0.51]

θK 18.00 24.63 14.68 10.55 21.05 16.51 13.12

s.e. [2.82] [1.38] [1.69] [0.75] [3.47] [0.81] [1.66]

θB 10.35 1.66 10.73 1.84 16.07 4.30 8.74

s.e. [1.41] [1.62] [1.95] [3.62] [2.82] [1.66] [2.40]

Model �t

XS- R2 0.45 0.83 0.86 0.92 0.90 0.93 0.84

TS- R2 0.12 0.38 0.39 0.52 0.38 0.47 0.23

m.a.e/VR 0.47 0.35 0.29 0.26 0.38 0.27 0.50
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Table 16: Estimated Input-Shares Across Fama-French Industries

This table reports the fraction of �rm value that is attributed to each input (µ, input-shares) based on their book and
market values for the Fama-French industries. The book-value decomposition is done by setting all the adjustment
costs to zero. We use the parameter estimates reported in Table 15 to calculate the market value decomposition.
We report both the aggregate and the average input-share decomposition. The table shows the time series averages
between 1975 to 2016.

NoDur Durbl Manuf HiTech Shops Hlth Other

(1) (2) (3) (4) (5) (6) (7)

Book value decomposition - Aggregate (in %)

µ̄P : Physical capital 62.22 71.28 70.68 53.89 77.86 45.95 77.21

µ̄L : Labor 0.00 0.00 0.00 0.00 0.00 0.00 0.00

µ̄K : Knowledge capital 8.00 18.56 18.03 36.74 4.05 38.84 11.41

µ̄B : Brand capital 29.78 10.16 11.29 9.36 18.08 15.22 11.38

Book value decomposition - Average (in %)

µ̄P : Physical capital 65.60 69.71 74.58 45.25 69.72 44.43 71.52

µ̄L : Labor 0.00 0.00 0.00 0.00 0.00 0.00 0.00

µ̄K : Knowledge capital 9.06 19.22 17.33 47.28 10.50 48.25 17.82

µ̄B : Brand capital 25.34 11.08 8.09 7.47 19.78 7.32 10.66

Market value decomposition - Aggregate (in %)

µ̄P : Physical capital 39.96 34.29 39.41 27.95 38.66 28.83 50.92

µ̄L : Labor 4.96 5.36 15.11 19.23 25.47 8.35 15.1

µ̄K : Knowledge capital 15.09 55.41 29.88 48.94 8.52 52.66 18.1

µ̄B : Brand capital 39.99 4.94 15.6 3.88 27.35 10.17 15.88

Market value decomposition - Average (in %)

µ̄P : Physical capital 43.84 32.84 39.93 21.52 33.05 25.87 49.78

µ̄L : Labor 4.74 11.83 19.81 19.88 25.97 11.71 18.41

µ̄K : Knowledge capital 18.08 50.05 28.82 55.8 13.47 58.43 20.65

µ̄B : Brand capital 33.34 5.28 11.44 2.81 27.51 3.99 11.16
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Table 18: Estimated Adjustment Costs Across Fama-French Industries

The �rst panel of this table displays the average skill index within each Fama-French Industry. The skill index ranges
from 1 (lowest skill level) to 10 (highest skill level) and the data is from Belo et al. (2017). The second panel evaluates
the adjustment costs using the parameter estimates reported in Table 15 and evaluated at 10% investment and hiring
rates as a proportion of the respective (average) median input stock-to-sales in Table 14.

NoDur Durbl Manuf HiTech Shops Hlth Other

(1) (2) (3) (4) (5) (6) (7)

Labor skill index

3.42 5.53 6.69 9.70 4.87 8.38 6.30

Adjustment costs evaluated at 10% investment/hiring

CP/Y : Physical capital 1.58 0.59 0.96 0.62 0.50 1.85 1.22

CL/Y : Labor 0.64 1.54 2.59 3.16 1.20 2.80 1.23

CK/Y : Knowledge capital 0.72 2.22 1.32 2.74 0.42 6.27 0.79

CB/Y : Brand capital 1.24 0.08 0.54 0.09 0.96 0.26 0.35

Realized adjustment costs (in %)

CP/Y : Physical capital 1.93 1.1 1.15 4.27 1.82 7.18 5.91

CL/Y : Labor 0.74 1.71 2.84 7.04 4.45 6.07 5.92

CK/Y : Knowledge capital 2.24 7.14 3.06 20.54 1.61 20.45 2.94

CB/Y : Brand capital 3.56 0.22 1.24 0.29 3.27 1.06 1.43
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