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Abstract

This paper analyzes the impact of the high-speed train (HST) roll-out on air carriers’
route network decisions in China. Using unique hand-collected data on the timing of the
HST roll-out and airline networks, we estimate a dynamic oligopoly model of air-route
entry and exit that accounts for the competition between airlines and the (positive and
negative) spillovers from the HST. We use the model to assess the impact of the HST on
airlines’ decisions by simulating a scenario without HST. We find that, despite signifi-
cant positive spillovers from the HST on airlines, derived from intermodal connectivity,
the HST reduced airlines’ route presence by about 14%, and airline profits by 23%. We
find considerable heterogeneity across route-types and regions. Airlines readjusted their
networks substituting towards longer routes and more peripheral regions in China thus
improving connectivity among regions. We also use the model to explore the benefits
of improving intermodal transportation.

Keywords: Entry, Dynamic Games, Continuous Time, Intermodal Substitution and
Complementarity, Network Competition, High-speed Train, Airline Industry

∗We are grateful to Frederico Belo, Pradeep Chintagunta, Katja Seim, Thomas Holmes, Amil Petrin, Joel
Waldfogel, Linli Xu, and Yi Zhu for their helpful comments and suggestions. We also thank the participants
of the Applied Micro Workshop and of the Marketing Brown Bag at the University of Minnesota. We
thank the participants of the Marketing Dynamics Conference 2019 (University of Maryland), and seminar
participants at Fudan University, Peking University, Tongji University, the University of Texas at Austin,
Temple University, and the UCLA Anderson School of Management for their comments. We specifically
thank Peter Arcidiacono for clarifications related with his work and helpful responses. This research was
supported by computational resources provided by the Minnesota Supercomputing Institute (MSI) and the
U-Spatial Department at University of Minnesota. All errors are our own.
†Temple University, Fox School of Business, Department of Marketing, Philadelphia, PA 19122, USA,

shaojun.qin@temple.edu.
‡INSEAD, 77300 Fontainebleau, France, maria-ana.vitorino@insead.edu (corresponding author).
§University of Minnesota, Carlson School of Management, Department of Marketing, Minneapolis, MN

55455, USA, johnx001@umn.edu.



1 Introduction

Transportation has a key role in the spatial distribution of economic activity. The increas-
ing availability of geographic data on transportation networks together with better retail
data has led to a renewed interest in the efficiency of urban transportation markets (e.g.,
Fréchette, Lizzeri, and Salz 2019, Barwick, Kalouptsidi, and Zahur 2021). Changes in trans-
portation infrastructure and its policies have effects on economic variables such as trade
costs, congestion, and unemployment (e.g., Allen and Arkolakis 2014, Barwick et al. 2022,
Fajgelbaum and Gaubert 2020) and can differ across transportation technologies (e.g., roads
versus rail). Further, as argued in Redding (2021), investments in a transportation tech-
nology may have effects that vary across locations and could lead to changes in the entire
(endogenous) transportation network.

This paper analyzes the impact of the high-speed train (HST) roll-out on air carriers’
route network decisions in China. The airline industry is an industry characterized by intense
competition. However, cooperation among competitors (i.e., co-opetition) is also prevalent
in this industry: airlines often engage in cooperation either by entering explicit alliances
or by feeding traffic to each other through a complex network of route connections.1 The
introduction of the HST, a viable substitute for air travel, increases competition but also
generates further potential complementarities for airline companies by creating more nodes
and connections in the transportation network and thus facilitating travel and expanding
the market. This reorganization in the airline transportation network can have significant
distributional effects given the changes in transportation coverage across the country.

As there is an increasing demand for more efficient, faster and cleaner transportation,
the HST industry has been rising globally. HST networks across Europe and Asia continue
to grow, with new lines underway or planned in countries such as France, Germany, Spain,
India, Japan and, on a much bigger scale, in China, where the high-speed network is expected
to reach 50,000 kilometers by 2025.2

In this paper we empirically quantify the positive and negative spillovers generated by
the introduction of the HST on the airline industry and study how airlines readjusted their
networks in response to the HST. Despite the intense discussion regarding the challenges and
opportunities that the HST has brought to airline carriers, there is no empirical evidence
that quantifies these effects. More generally, the topic of how firms reposition their products

1Co-opetition can be defined as simultaneous competition and collaboration between two or more orga-
nizations (see Laamanen (2016)). The concept of “co-opetition” was first coined by Ray Noorda, founder of
Novell, and popularized in the strategic management field by Adam M. Brandenburger and Barry J. Nalebuff
in their book Co-opetition (Brandenburg and Nalebuff 1996).

2Source: https://lite.cnn.com/en/article/h_1bf22f56108ae8a03cc59f022d5a8e21
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to avoid competition while taking advantage of positive spillovers is understudied. Further,
our analysis can help guide the decision to introduce the HST in other regions or countries.3

We hand-collect daily flight information for the four major passenger airlines and their
subsidiaries in China (which account for almost 90% of the domestic air passenger traffic)
and use this data together with detailed information on the timing of the HST entry from
2006 to 2016. The data covers over two thousand city-pairs (i.e., routes) over a period of
eleven years. We exploit variation in the airlines’ route choices over time and across regions,
together with the evolution of the HST’s route network to identify how airlines’ route choices
respond to the presence of the HST.

We use both reduced-form analysis and a structural model to answer the research ques-
tions. First, we use a difference-in-differences approach to provide quasi-experimental evi-
dence of the causal effect of the introduction of the HST on airlines’ network adjustments.
We measure the change in airline presence in routes which experience the entry of the HST
against untreated routes (which do not experience the entry of the HST). The results from
the difference-in-differences analysis are consistent with both positive and negative effects
from the HST on air service, and provide further additional insights. While the HST reduces
airline presence on shorter air routes that overlap with HST service, in longer routes we
observe the opposite effect, thus suggesting the existence of market expansion effects. In our
difference-in-differences analysis, we also accommodate potential concerns with endogeneity
that may originate from the fact that the roll-out of the HST does not proceed randomly.4

Next, to quantitatively assess the impact of the HST introduction on airline carriers’
route network decisions and conduct counterfactual experiments, we setup and estimate a
structural dynamic oligopoly model of airlines’ network configurations. Because demand side
data such as prices and seat occupancy is not available, we formalize the observed airline
route presence as the equilibrium outcome of an entry game (e.g., Berry 1992, Ciliberto and
Tamer 2009).

A structural model of airlines’ network decisions poses several challenges. First, airlines
operate in a network structure; in our setting, the typical airline serves 323 routes and
could serve potentially 2, 278. Solving for the optimal network by complete enumeration is
unattainable. Second, there are multiple large airline players and each firm’s route decisions

3For example, in the United States, local airline carriers have opposed the idea of HST introduction
for years (For references, see https://www.citylab.com/transportation/2015/05/southwest-airlines-
hasnt-decided-whether-or-not-to-oppose-texas-high-speed-rail/392462/). Quantifying the nega-
tive and potential positive spillovers from HST to air travel (and their net effect) allows us to understand
whether the resistance of the airline industry regarding the introduction of HST in some regions (such as
California) is warranted.

4With this purpose, we rely on an insight from Goolsbee and Syverson (2008) in their study of how
incumbents respond to the threat of entry by a competitor in their study of entry of Southwest Airlines.
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are dependent on their own and the other firms’ networks. Lastly, airlines’ decisions are
inherently dynamic (i.e., firms are forward-looking) because there is a sunk cost associated
with entering each route and there is uncertainty regarding the market conditions (demo-
graphics and train network) which change over time. Airlines reassess their networks often,
which results in frequent entry and exit from the numerous city-pair routes.

We account for both the dynamic nature of airlines’ competition and for the network
structure that firms exhibit in this context in a similar manner to Aguirregabiria and Ho
(2012), where airlines make decisions regarding their networks in a decentralized manner
by keeping track of the state of the network through a sufficient set of statistics instead of
considering the entire network configuration. Different from Aguirregabiria and Ho (2012),
however, we adopt a continuous time framework (Arcidiacono et al. 2016, henceforth ABBE)
for the airlines’ dynamic entry game which allows us to take advantage of the lack of regu-
larity in airlines’ decision making and to make use of our high frequency data. (Modeling
the forward-looking behavior of firms with a very large state space invalidates the use of
traditional approaches to estimate dynamic games of entry and exit, e.g., Ericson and Pakes
1995 and Aguirregabiria and Mira 2007.) In addition, a continuous time approach makes it
possible to conduct counterfactuals despite the high-dimensionality of the dynamic game.

Our model extends ABBE’s empirical setup in two novel ways. First, while in ABBE
markets are independent, we allow the model to capture airline and train networks inter-
dependencies. Second, because airlines do not exit routes in a permanent fashion (airlines
often exit routes which they re-enter later on) we cannot apply ABBE’s finite dependence
representation which is frequently used to simplify the solution of dynamic models. We
proceed by following a suggestion made in Rust (1996) and apply a GMRES (generalized
minimal residuals) method (Saad and Schultz 1986) to solve our model. Although this
makes the estimation computationally more intensive, our approach is still doable given the
continuous-time formulation of the model.

The estimation of the structural model provides strong evidence of both negative and
positive spillover effects from the HST on airlines, consistent with the results from the
difference-in-differences analysis. These spillover effects depend on the routes’ characteristics
and on the interaction between the characteristics of the routes and the HST network.
Specifically, we conclude that the HST is a strong substitute for air travel, especially in
shorter routes. The substitution effects of HST relative to air travel dissipate for longer
routes, however. Air routes with a larger number of connections to HST lines benefit more
from positive spillovers.

We perform counterfactual analyses using the structural model to quantify the effects of
the entry of the HST on the airline industry. Using the model to simulate the endogenous
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equilibrium outcomes is necessary because the evolution of the airline network during the
period studied naturally depends on the market environment. First, we simulate the network
configurations of the airline carriers in a scenario in which the HST is not present, and
compare the endogenous airlines’ route decisions and profits to the baseline case in which
the HST is introduced. Because the HST has a heterogeneous effect on the airline industry,
we also explore the sources and impact of such heterogeneity.

We find that, overall, despite the existence of significant positive spillovers from the HST
on the airline industry, the introduction of the HST reduced airlines’ route presence by about
14% and airline profits by 23%. Even though the overall net impact of the introduction
of HST is negative, the results reveal considerable heterogeneity across cities and route-
types in how the HST impacted the airline industry. Airlines readjusted their networks by
substituting towards longer routes and more peripheral regions in China. Airline entry in
these routes would not have occurred in the absence of the HST, which made them profitable
for airlines. Thus, we find that the HST did not have a pure crowding-out effect but rather
led to an expansion of the size of the overall network through complementarities. This
highlights a potential indirect benefit of the HST entry in shifting airlines to more remote
and underserved areas, improving connectivity among regions and reducing inequality.

In another experiment, we simulate an increase in the positive spillover effects between
the HST and the airline industry to explore the possible benefits from services that facilitate
the complementarity between the two modes of transportation. This experiment is motivated
by the government’s goal to increase people’s mobility through a better integration of air
and rail travel, and allows us to assess how the efforts to improve the degree of connectivity
between the two modes of transportation may compensate the negative effects of the HST
on airline entry.

We find that, although a uniform increase in the strength of positive spillovers from
HST can compensate the negative impact of HST on air carriers’ overall network size, the
increase in airline profits associated with this improvement does not affect all air routes
uniformly. The higher elasticity of the airline service provision in some regions with respect
to the improvement in the positive spillovers from the HST makes them especially important
targets for providing intermodal connectivity services.

The rest of the paper is organized as follows: Section 2 reviews the literature. Section 3
describes the industry background. Information on the data is provided in Section 4. Section
5 provides reduced-form evidence of the effects of the HST on the airline industry. Section 6
presents the structural model and the model’s empirical specification and estimation strategy.
The results from the structural model are presented in Section 7. Finally, Section 8 presents
the counterfactual analyses and Section 9 concludes.
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2 Literature

This paper is related to several streams of literature. First, to the extent that this study uses
route entry and exit information to estimate airline’s profit functions, this paper contributes
to the empirical industrial organization literature on firm entry and spatial competition.
Empirical static discrete games have been used to capture firms’ strategic interaction be-
havior (e.g., Bresnahan and Reiss 1990, Bresnahan and Reiss 1991,Seim 2006).5 Several
studies in this literature have focused specifically on the coexistence of both negative and
positive spillovers from competitors. This makes them closer to our research given that we
empirically quantify the positive and negative spillovers generated by the introduction of the
HST on the airline industry and among airlines. For example, Vitorino (2012) studies stores’
entry decisions in shopping centers and finds strong evidence of both positive and negative
spillovers among stores of different formats. Datta and Sudhir (2011) develop a model of
entry and location choice games among stores and use detailed store-level data and spatial
zoning data to disentangle the trade-off between co-location and spatial differentiation. Yang
(2012) studies the fast food industry and explores the channel (i.e., variable profits versus
fixed costs) through which spillovers affect firms’ entry decisions.6

A subset of the literature on firm entry focuses on the “chain effects” of firms with multiple
stores (e.g., Jia 2008, Holmes 2011, Aguirregabiria and Ho 2012, Nishida 2014 and Zheng
2016). For example, Jia (2008) studies a location choice game between Walmart and Kmart
and allows for positive spillovers among nearby stores of the same company. Nishida (2014)
extends Jia (2008)’s framework to allow for multiple stores in the same market and applies
it to the convenience store industry in Japan. These two papers estimate static oligopoly
models with two players. Holmes (2011) allows for dynamic network decisions of Walmart,
but abstracts away from the competition between Walmart and other chain stores. Similar
to these papers we allow for interdependencies across markets to capture the features of the
transportation network that characterizes the airline industry. However, we use a dynamic
model (with multiple players) which helps us to better understand the evolution of the airline
industry over time as a result of the introduction of the HST.

Our paper also contributes to the growing literature on transportation. Recent research
5As opposed to other transportation markets, such as the taxi market (e.g., Fréchette, Lizzeri, and Salz

2019), where there are tens of thousands of players and thus entry is competitive and players only keep track
of the aggregate state of the market, in our context, airline firms are strategic as in most studies in the entry
literature.

6In a network transportation context, Cao et al. (2021) study the dock-less bike sharing industry and
find reduced-form evidence that the entry of a competitor may improve the incumbent’s market coverage
and profitability. In their follow-up theoretical model, they show that this could happen due to the comple-
mentarity between the spatial networks of the two firms in the market.
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has developed richer transportation and spatial equilibrium models which address a variety
of topics.7 Spatial models have been used, for instance, to study the role of network effects
on trade costs (e.g., Brancaccio, Kalouptsidi, and Papageorgiou 2020), the consequences
of transportation policies on congestion (e.g., Barwick et al. 2022), the spatial sorting of
labor (e.g., Fajgelbaum and Gaubert 2020), and search frictions in decentralized spatial
markets (e.g., Fréchette, Lizzeri, and Salz 2019, Liu, Wan, and Yang 2021, Brancaccio et al.
2022, Buchholz 2022). Our research is especially related to a subset of the literature that
studies the impact of infrastructure development. In particular, the papers by Heblich,
Redding, and Sturm (2020), Donaldson and Hornbeck (2016) and Donaldson (2018) study the
impact of developments in the railway network. Using general equilibrium models, Heblich,
Redding, and Sturm (2020) quantify the impact of the invention of the steam railway on
the separation of workplace and residence in London. Donaldson and Hornbeck (2016), and
Donaldson (2018) evaluate the welfare implications of railroad development in the US and
India, respectively. Our paper differs from these these studies because, while these papers
focus on the impact of changes in infrastructure on economic output variables such as trade
costs, congestion, and unemployment, our ultimate interest is on the heterogeneous and
dynamic response of airlines across geographic space to the development of a new means of
transportation (the HST). Further, the HST may act not just as a substitute but also as a
complement to air travel. Our model also allows the airline industry to adjust their network
configuration (endogenously) in response to the HST entry in a context of oligopolistic
competition.8

Methodologically, we build on the literature on dynamic estimation of equilibrium en-
try games. Most of this literature has used conditional choice probability estimators (CCP)
(Hotz and Miller 1993 and Hotz et al. 1994) to study a wide range of dynamic discrete choice
problems including simultaneous-move dynamic games (Aguirregabiria and Mira 2007; Ba-
jari, Benkard, and Levin 2007; Pakes, Ostrovsky, and Berry 2007; Pesendorfer and Schmidt-
Dengler 2008). From this literature, the paper closest to our research is Aguirregabiria and
Ho (2012) who were the first to propose a dynamic game of network competition and to
estimate it in the context of the US airline industry.9

7Redding and Rossi-Hansberg (2017) and Redding (2021) offer two reviews on the broader literature on
economic geography and spatial economics.

8Fajgelbaum and Schaal (2020) and Allen and Arkolakis (2022) have recently studied optimal (and
endogenous) transport network design within a general equilibrium spatial trade framework. Different from
our focus, Allen and Arkolakis (2022) measure the impact of road infrastructure investments on congestion
and transportation costs, while Fajgelbaum and Schaal (2020) study optimal network investments subject
to congestion in a context in which a social planner is responsible for building the road infrastructure.

9There are other recent papers which have studied the the airline industry but Aguirregabiria and Ho
(2012) is the most closely related to ours. For example, Wei (2018) focuses on airlines’ network value from
the perspective of traffic density (as opposed to the hubbing effect) and provides evidence that consumers
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Different from Aguirregabiria and Ho (2012), who model airline’s decisions in discrete
time, we adopt a continuous time framework for the airlines’ dynamic entry game. Fur-
ther, while their focus is to explore the sources of benefits from the hub and spoke business
model, this paper emphasizes the spillovers from different modes of transportation. We
adopt Arcidiacono et al. 2016’s (henceforth ABBE) continuous time framework for the air-
lines’ dynamic entry game to accommodate our high frequency data (airlines reassess their
networks often, which results in frequent entry and exit) and high-dimensional game. ABBE
developed a general framework for estimating and solving dynamic discrete choice models
in continuous time which has been used to study dynamic entry games in several settings.10

We further extend the ABBE methodology to accommodate our context by allowing for
interdependencies across markets and to allow for airline re-entry into routes.

Also, to the extent that airlines can be regarded as multi-product firms that differentiate
themselves through their route network configurations, this paper is related to the litera-
ture on product assortment decisions (e.g., Draganska, Mazzeo, and Seim 2009, Sweeting
2010, Sweeting 2013, Jeziorski 2014a, Jeziorski 2014b, Eizenberg 2014, Fan and Yang 2020,
Viswanathan, Narasimhan, and John 2021). For example, Draganska, Mazzeo, and Seim
(2009) study the competition between firms in both product choices and prices and find that
incorporating product assortment decision as a strategic variable is important for policy
simulations. Eizenberg (2014) estimates a model of supply and demand in the PC industry
in which both price and PC types are endogenously determined, and then uses the model to
assess the welfare implications of the introduction of new upstream components. Fan and
Yang (2020) examine the relationship between oligopolistic competition and product offering
and find that a reduction in competition decreases both the number and variety of products.

prefer routes with higher flight frequencies. His paper structurally models preferences in consumer demand
and solves for air carriers’ optimal pricing strategies in interconnected air routes, but abstracts away from
firms’ decisions regarding their network configuration and from industry dynamics. Ciliberto, Murry, and
Tamer (2021) and Li et al. (2022) jointly model airline entry and pricing but their focus is on airline mergers
and each route is taken as an independent market.

10Recent papers have used the ABBE framework to study the dynamic entry games of firms in various
scenarios. For example, Cosman (2017) studies the entry and exit decisions of firms in night life venues
and finds evidence of strong customer preferences for variety. Smith (2018) applies a continuous-time entry
model to estimate the net impact of globalization on the clothing industry, and finds that direct imports
account for at least 14% in the decrease in the number of small clothing stores. Both papers approximate
the value function based on a finite dependence property, which assumes that firms’ exit decisions are
permanent. Zhang (2020) models banks’ branching decisions and assesses the long-run implications of
banking service digitization and competition from fintech mortgage lenders. Other literature has also used
ABBE’s methodology to study single agent discrete choice problems. For example, Deng and Mela (2018) use
set-top box viewing data to develop an instantaneous show and advertisement viewing model and find that
device level advertising targeting is more effective than show-level targeting. Nevskaya and Albuquerque
(2019) model consumers’ gaming decisions with high-frequency data and proposes strategies for firms to
manage excessive product use.

7



Other papers focus on the “repositioning” aspect of product assortment decisions and employ
structural models to assess firms’ product strategies in response to some change in the market
structure. For example, Sweeting (2013) studies the impact of fees for musical-performance
rights on radio station formats and finds that the impact of such a policy change is larger in
the long run than in the short run. Jeziorski (2014b) develops a dynamic model to estimate
the cost efficiency of mergers in the U.S. radio industry while accounting for the reposition-
ing of the products (radio station) and merger choices. In these previous papers, the major
motivation behind the product (re)positioning is either to avoid competition or to reduce
cannibalization. Our setting is different in that there can be complementarity among the
different firms. This difference may play a key role in determining firms’ product assortment
decisions.

Finally, this paper contributes to the growing studies on the economic impact of the HST.
The existing transportation and economic geography literatures have examined the effect of
the HST on various outcomes, such as economic growth and regional equity (e.g., Qin 2016,
Yao et al. 2019, Banerjee, Duflo, and Qian (2020), Zhang et al. (2020), business development
and job creation (e.g., Heuermann and Schmieder 2018, Shi et al. 2020, Chen et al. 2022), and
the re-distribution of healthcare resources (e.g., Chen, Hao, and Chen 2021, Yoo, Vitorino,
and Yao 2022). Studies of the impact of the HST on the airline industry, however, tend to
view the two modes of transportation as substitutes and therefore emphasize the negative
spillover effects of the HST (e.g., Wang, Bonilla, and Banister 2016, Chen 2017, Li and Loo
2017. Also see Zhang, Wan, and Yang 2019 for a more detailed review of the literature). In
contrast, our paper focuses on the co-existence of negative and positive spillovers from the
HST to the airline industry. In this sense, our paper is closer to Liu et al. (2019) and Zhang,
Wan, and Yang (2019), who find that the introduction of HST may have both positive and
negative impact on airports depending on their types (i.e., international versus domestic) and
levels (more versus less) of air connections. While the previous studies rely on reduced-form
analysis to quantify the impact of HST on the airport level, our paper builds a structural
model, which allows us to assess the impact of the HST on the network configuration of the
airline industry.

3 Industry Background

We use data from the airline and HST industries in China. Before describing the data,
we provide a brief overview of these industries to help provide context for the subsequent
analyses. We focus mostly on the period from 2006 to 2016 which corresponds to the data
period used in the empirical analysis.
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3.1 The Airline Industry in China

Air-passenger volume in China went from 237.1 billion passenger-km in 2006 to 837.8 billion
passenger-km in 2016.11 This rapid growth was in large part the result of an increase in the
number of routes served and in the number of flights offered by airlines, possible due to the
reduction of regulatory oversight on the airline industry.12 In 2006, a significant deregulation
effort lifted constraints imposed on airlines regarding their ability to add or drop flights from
a route and, since then, airlines only need to apply for permission to add flights to routes
that have the cities of Beijing, Guangzhou and Shanghai, as one of the route endpoints.
Routes that do not involve these cities as endpoints require only a simple registration pro-
cedure to add a flight. Shanghai, Beijing, and Guangzhou are subject to stricter regulatory
constraints because, as the busiest airports in China, the government carefully moderates
the air traffic volume that can be accepted into these airports. An exception to this rule
applies to airlines that are headquartered in Beijing, Guangzhou or Shanghai which are ex-
empt from government approval whenever they wish to add a flight to a route that connects
the airline’s headquarters-city to other cities (except for Beijing, Guangzhou and Shanghai).
Furthermore, since 2006, dropping a flight from any route requires only a simple cancellation
request.

Figure 1 lists the major airline companies in China grouped by parent company. Al-
though there are more than 30 airline companies in the industry, the majority of them
are subsidiaries of the top four airline companies in China, namely Air China (CA), China
Southern Airlines (CZ), China Eastern Airlines (MU) and Hainan Airlines (HU). These four
airlines are publicly traded companies. Between 2006 and 2016, their combined share of
passenger volume (including their subsidiaries) was approximately 90%.

=========================
Insert Figure 1 about here

=========================

3.2 The Railway Industry in China

Over the past decade, China has built (or upgraded) over 20, 000 km (12, 500 miles) of high
speed railways, more than the rest of the world combined. In 2016, more than 1.47 billion

11Source: National Bureau of Statistics of China, 2017.
12Wang, Bonilla, and Banister (2016) and Yang, Zhang, and Wang (2018) provide a detailed account of

the history of regulatory oversight of the airline industry in China.

9



passenger trips, corresponding to 404 billion passenger–kilometers, were made by HST, which
is about half of those made by air.13

The central government of the People’s Republic of China, directly or indirectly through
state-owned companies, develops and operates the entire train infrastructure in China in-
cluding both the traditional and the high-speed rail networks. This means that the decisions
regarding the operations of the different train routes are not driven by profit maximization
motives (until 2016, the only HST route that was able to operate profitably was the route
between Shanghai and Beijing14). The government views the Chinese train infrastructure as
a source of international prestige, with a significant impact on people’s lives through their
mobility.15

In 2004, the government adopted an ambitious long-term rail development plan outlining
the expansion of the HST rail network up to the year 2020. The plan included both the
construction of about 12,000 km (7,500 miles) of new HST rail routes and the upgrading
of about 16,000 km (10,000 miles) of existing rail routes to accommodate trains of higher
speed. The expansion of the HST route network was, for the most part, predetermined even
though there was some uncertainty regarding when and whether specific routes would be
served by the HST.16

There are two types of HST. The “fast train” is capable of achieving a maximum speed
of 250 km/h (about 155 mph) while the “bullet train” can achieve a speed of up to 350 km/h
(about 215 mph). While the routes for these two types of trains often overlap, they operate
on different rails.17 In terms of pricing, for the same route, a bullet-train ticket is about 60%
more expensive than a fast-train ticket.18

The first fast-train and bullet-train lines started operations in 2007 and 2008, respec-
tively, connecting major cities such as Beijing, Guangzhou, Shanghai, Tianjin, and Wuhan.
From 2007 to 2016, the network expanded rapidly and China spent an estimated 2.4 tril-
lion yuan (353 billion USD) building 22,000 km (13,670 miles) of high-speed rail lines, more

13Source: https://www.qianzhan.com/analyst/detail/220/181031-61b71943.html (in Chinese and
last accessed on July 5, 2022).

14Source: http://view.163.com/special/resound/chinahsr20160721.html (in Chinese and last ac-
cessed on January 24, 2019).

15Source: https://www.straitstimes.com/asia/chinas-rail-ambitions-run-at-full-speed (last
accessed January 24, 2019).

16The plan adopted in 2004 was updated in 2008 and in 2016, mostly with the purpose to add more routes
to the existing planned network.

17Upgraded existing rails can only accommodate fast trains, but not bullet trains. There is no difference
in terms of speed between fast trains operating on newly built rails or on existing rails that have been
upgraded.

18This number is calculated based on the price data (for a seat in economy class) collected on November
15th, 2016 for routes where both fast trains and bullet trains were in operation.
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than the total high-speed railway length of the world combined.19 Figure 2 shows the geo-
graphical expansion of the HST network in China between 2007 and 2016. The number of
train passengers has also grown rapidly, at a nearly 90% annual growth rate (compounded),
surpassing the number of domestic passengers in the airline industry in 2011.20

=========================
Insert Figure 2 about here

=========================

3.3 The Effect of the HST on the Airline Industry

The introduction of the HST had a significant impact on the airline industry. As reported
in the press, airlines exited several routes and reduced the number of flights offered to
avoid direct competition with the HST, consistent with the HST being a substitute for air
transportation.21

Traveling by train can be more appealing than traveling by plane for several reasons.
For example, trains are better for the environment, are more comfortable, tend to be more
punctual and train tickets are in general cheaper. However, the extent to which air and
rail are perceived as substitutes depends significantly on trip length. Figure 3 illustrates
the relationship between door-to-door travel time and travel distance for both air and HST
transportation.22 For short routes (under 600 km in length), the door-to-door travel time by
HST is shorter compared to air travel, even though airplanes are faster than HST. Airports
are more remotely located, require longer check-in times and more security checks, all of
which increase the door-to-door travel time. For these reasons, the HST has a larger strategic
advantage in relatively shorter routes.

=========================
Insert Figure 3 about here

=========================

At the same time that the HST can be a substitute for air travel, it can also have a
complementary role to air transportation. For example, the HST can connect a node within
an airline network to follow-on destinations that may not be served by air.

19Source: https://www.yicaiglobal.com/news/china-high-speed-rail-network-is-larger-than-
the-rest-of-the-world (last accessed January 24, 2019).

20Source: China/HK Airlines Sector Report, DBS Group Research, 2018
21Sources: https://www.bloomberg.com/news/articles/2018-01-09/high-speed-rail-now-rivals-

flying-on-key-global-routes (last accessed November 6, 2019), and http://news.xinhuanet.com/
fortune/2011-04/12/c_121293247.htm (in Chinese and last accessed on November 20, 2019).

22Source: https://www.pinchain.com/article/95181 (in Chinese and last accessed on Oct 29, 2016)
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Intermodal travel can be facilitated by explicit cooperation efforts such as the devel-
opment of transfer connections between airports and railway stations, through ticketing
involving flight and HST tickets, and end-to-end baggage handling. Despite these potential
benefits, explicit cooperation between the two different modes of transportation has not been
significant in China.

The complementarity between the two modes of transportation can also lead to a more
indirect effect on the expansion of the travel market. With the entry of the HST, travel
agencies have started to offer a larger variety of travel packages. For example, in 2013,
five cities in the Northeastern part of China (Dalian, Shenyang, Changchun, Haerbin and
Changchun) jointly introduced a travel package that combines the tourism resources of the
five cities. Their promotional slogan read “Fly to Dalian, take a HST and tour Northeastern
China”. The HST makes travel between the five cities more convenient and increases the
attractiveness of the combined package, which in turn leads to more flight sales.

Taken together, this evidence highlights that, in order to quantify the effect of the entry
of the HST on the airline industry, one needs to consider both its negative and positive
effects. Further, the heterogeneity of the different routes (in terms of, for example, their
length and connectivity level) means that the effects are also likely to vary depending on the
routes’ characteristics.

4 Data

4.1 Data Sources and Sample Selection

It is difficult (if not impossible) to obtain comprehensive price and quantity data that en-
compass both the airline and rail industries in China. So, to study the effect of the entry
of the HST on the airline industry, we rely mostly on market structure data. Specifically,
we assemble a unique dataset with flight-schedule information and the detailed timeline of
the HST introduction that spans the 11-year period from January 1, 2006 to December 31,
2016.

We obtained flight schedule data from a website that archives historical flight data. We
extracted information for the top 70 airports in China, which translates into over 20 million
observations.23 Each record includes the date, airline, flight number, and origin/destination
cities. This information allows us to uncover the routes covered by each airline and the

23The airport ranking we refer to is based on 2015 passenger volume provided in the Statistical Year Book
Civil Aviation Administration of China 2015. The top 70 airports account for more than 95% of passenger
volume in China and correspond to a coverage of 68 cities (Beijing and Shanghai each have two airports).
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number of flights operated by each airline daily. We define a route to be a non-directional
city-pair. Henceforth, we use route, market and city-pair interchangeably.

We focus on the major four airlines (including their subsidiaries) Air China (CA), China
Southern Airlines (CZ), China Eastern Airlines (MU) and Hainan Airlines (HU). They cover
about 96% of the number of the unique number of routes served between 2006 and 2016 (not
tabulated) and account for about 88% of the number of flights operated during the period
studied (not tabulated).

To capture the effective coverage of each airline, we focus on flights that operate regularly.
Therefore, we exclude seasonal flights (such as those only provided in occasions such as the
Chinese Festival or Christmas) and infrequent flights (which may reflect local government
subsidies), hence we only consider flights that are offered on a schedule for longer than one
year. Accordingly, a route is only served by an airline at a given point in time if a flight that
operates regularly is in operation. To guarantee we satisfy this data-selection criterion, we
drop the first and the last years in the dataset and thus focus on the time period from the
beginning of 2007 to the end of 2015.24

To track the timing of the HST introduction on a route-by-route basis we supplement
data from multiple government websites and from news reports with historical data scraped
from www.12306.com, the official website used to purchase train tickets online in China. These
data allow us to identify, at each point in time, which cities are part of the HST network
and the type of HST that operates in each route (fast train or bullet train).

Lastly, we supplement the flight and train data with yearly demographic data obtained
from the China City Statistical Yearbook published by the National Bureau of Statistics of
China.

4.2 Summary Statistics and Data Patterns

In this section we provide summary statistics of the variables that characterize the routes
(i.e., city-pairs) in our data and that can potentially help explain the airlines’ network
structure and the HST’s introduction patterns. We also explore descriptively the relationship
between the route characteristics and both the airlines’ decisions and the HST expansion
and investigate the overlap between the airline industry network and the HST rail coverage.
The descriptive statistics and the relationships established in this section will be important
for the next sections in which we model how the HST affects airlines’ network decisions.

Tables 1 and 2 provide summary statistics for all the routes in our sample after aggregat-
24In several analyses in the paper we conduct robustness checks in which we relax this data-selection

criterion. For example, we conduct several analyses that include all flights that operate for longer than three
months.
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ing the variables related to the airline data from daily to annual. Table 1 pools information
across all years in the sample and Table 2 provides information regarding the variables’ av-
erages for each year. In these two tables we consider all potential routes, including those in
which no flights or HST are in operation. In total there are 2, 278 routes in the data with an
average length of about 1, 500 km. In the analyses that follow we categorize the routes into
three groups in terms of route length: short, medium and long, using 600km and 1200km as
cutoff points.25 Most routes are long (60% of routes), followed by medium (28%) and short
(13%).

=========================
Insert Tables 1 and 2 about here

=========================

Overall, our data reflects the country’s and the transportation industry’s growth discussed
in Section 3.1. For the city-pairs and years studied, GDP grew at an average rate of 15% per
year. Airline route coverage went from 25% in 2007 to 37% in 2015 at the same time that
the average number of airlines operating in a route went from 0.44 in 2007 to 0.70 in 2015.
Likewise, the average number of flights per route also went up from 1.06 in 2007 to 2.02 in
2015.26 The statistics also show that airlines concentrate their operations in a subset from
all of the possible city-pairs with 70% of routes (on average, across all years) not having any
airline presence. The number of flights is also quite unevenly distributed across the routes
with flights: 50% of the total number of flights are concentrated in about 30% of all routes
that have flights (not tabulated).

Table 2 and Figure 2 show the rapid expansion of the HST network. HST route coverage
went from 7% in 2007 to 21% in 2015 for fast trains and from no coverage in 2007 to 10%

in 2015 for bullet trains. In 2013 and 2014 there was a particularly significant expansion
of the HST network. The HST route coverage for bullet trains increased from 2% in 2012
to 7% in 2013, and the fast train coverage went from 11% in 2013 to 19% in 2014. There
were significant changes in the level of overlap between the set of routes served by airlines
and those served by the HST over time. As Figure 4 shows, between 2007 and 2015, the
proportion of air-routes which faced direct competition from the HST increased. By the end

25These cutoffs are motivated by our discussion regarding the differences in competitive advantage of
airlines and the HST; industry reports support the notion that the HST has more advantage for routes
shorter than 600 km and airlines have more advantage for routes longer than 1200 km. Source: http:
//www.pinchain.com/article/95181 (in Chinese and last accessed on June 9, 2022).

26Note that the average number of airlines and flights that operate in a route reported here can be less
than one. This is because we are using the total number of possible routes (20,502) as the denominator in
our average calculation. If we use as the denominator the total number of routes covered by airlines (564
in 2007 and 833 in 2015), the average number of airlines operating in a route is 1.79 for 2007 and 1.91 for
2015, and the average number of flights per route is 4.24 for 2007 and 5.42 for 2015 (not tabulated).
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of 2015, more than 35% of the airline routes were served by fast trains, and more than 15%

by bullet trains, compared to 15% and 0% in 2007 for fast and bullet trains, respectively.

=========================
Insert Figure 4 about here

=========================

Figure 5 shows that, even though there was an increase in overall airline route-presence,
there was a significant number of air route exits as well (i.e., routes in which airlines had
been operating for more than one year and then stopped operating). On average, for every
four routes that experienced entry of one or more new airlines, there were about three routes
that experienced airline exit.

=========================
Insert Figure 5 about here

=========================

According to Table 3, where we report airlines’ route decisions and the presence of HST
according to the distribution of route length across all years in the sample, most airline
entry and exit occurred in routes of short and medium length. Further, shorter routes saw
significant exit and, in net terms, were the ones that experienced the least growth in terms
of airline presence.

=========================
Insert Table 3 about here

=========================

To better characterize the link between HST presence and airline entry and exit, in Figure
6, we display the evolution of airline route-presence as a function of the degree of overlap
and connectivity with the HST.27 Panel A describes the evolution in the number of airlines
serving routes that overlap with the HST for short and medium/long routes, separately. The
figures show that, while there is a decline in the number of airlines present in short routes
that overlap with HST, there was significant airline entry in longer routes. This pattern is
consistent with the fact that airlines have a strategic advantage relatively to the HST in
longer routes. Turning to the airline routes which do not overlap with the HST, Panel B
compares the evolution of airline presence in routes connected with the HST with routes
not connected. We find that routes connected to the HST exhibit more airline presence (0.4

27Patterns are similar if, instead of looking at the evolution of airline route presence, we look at the
evolution in the number of flights.
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airlines are present on average in routes connected to the HST, compared to 0.1 for routes
not connected). Further, even though in both types of routes (connected vs. no connected)
airline exit was dominated by airline entry, in routes connected to the HST the growth in
(net) airline entry was 3 times larger on average.

=========================
Insert Figure 6 about here

=========================

This descriptive evidence suggests that airline presence depends on both HST presence
and connectivity to routes served by the HST, and points to the possible existence of both
positive and negative spillovers from the HST to airlines.

Independently of the entry of the HST, because airline route decisions are interdependent,
we expect an airline’s decision to enter or exit a given route to be affected by the airline’s
operations in other routes, especially in (directly) connected routes that share the same
endpoint airport (e.g., Berry 1992, Goolsbee and Syverson 2008, and Ciliberto and Tamer
2009). We descriptively assess the impact of endpoint-airport presence on an airline’s decision
to enter a new route by estimating a probit model in which the dependent variable is a
binary variable equal to one if an airline enters a given route in year t and zero otherwise.
As independent variables of interest we include dummy variables that capture whether an
airline operates in none, one or both endpoints of a given route in year t−1. Year and airline
fixed effects are also included in the regression. Only route-year combinations in which an
airline is not present in year t − 1 are considered. Table 4 reports the estimated marginal
effects of airport presence on airlines’ entry probabilities.

The results show that operating in one or both endpoints of a given route (as opposed
to none) is associated with a significantly higher probability of entering that route. Further,
the marginal effect on route entry of operating in airports located in both endpoints of a
route is almost four times larger than that of operating in only one of the endpoint airports –
when compared to the baseline, operating in both airport-endpoints of a route increases the
probability of entry by about 11 percentual points per year. These results are directionally
consistent with those that Goolsbee and Syverson (2008) obtain in a similar analysis and
support the notion that route connectivity influences airline network decisions.

=========================
Insert Table 4 about here

=========================
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5 Reduced-Form Evidence

We are ultimately interested in understanding and quantifying how the entry of the HST
affects airline decisions. Before studying more formally the strategic interaction between the
airlines and their response to the HST in the context of a structural model, in this section,
we establish that the entry of the HST affects airlines’ route decisions and thus that there
is a causal link between the entry of the HST and the structure of the airline industry in
China. In addition, we show evidence suggestive that the entry of the HST generates both
positive and negative spillovers to the airline industry given its heterogeneous effects.

5.1 Difference-in-Differences Estimates

We use a difference-in-differences (DID) specification to assess the relationship between air-
line and HST presence. This allows us to exploit the variation in the introduction of the
HST over time, and across routes with different characteristics. The DID compares route
airline-presence before and after the entry of the HST while controlling for unobservables
that are shared by the different routes and that change over time (by using control routes).
Because we have multiple routes and time periods (and routes are not “treated” all at the
same point in time), we use the following DID specification:

Airline Presencert = λr + αt + βHSTrt + Xrtγ + urt, (1)

where r indexes route, and t indexes time (year).28 We include year fixed effects, αt, route
fixed effects, λr, and route-specific covariates, Xrt.29 The term urt is a route-time specific
error. The dummy variable “HST” indicates whether the high-speed train was present in
route r by time t. The coefficient on “HST” is interpreted as the average increase/decrease
in the number of airlines present in a route that is attributable to the entry of the HST.
We allow for heterogeneous effects of the treatment across routes by interacting the variable
HST with route-specific covariates such as route length and the number of HST connections.
The dependent variable, Airline Presence, is defined as the number of airlines present in a
given route in a given year; results are robust to using the total number of flights in a route
instead.

The difference-in-differences estimation technique allows us to control for omitted vari-
28For example, see Bertrand, Duflo, and Mullainathan (2004) for a similar model setup to ours.
29Some of the route-specific covariates change over time (e.g., GDP) while others remain constant through-

out the period studied (e.g., route length). Whenever route-fixed effects are included in the model, the
route-specific covariates that do not change over time are naturally not identified (only their interaction
with other covariates that change over time is identified).
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ables. The year fixed effects control for nationwide shocks and trends that may affect the
airline industry over time, such as business cycles and changes in regulation at the national
level. The route fixed effects control for time-invariant, unobserved route characteristics
that may explain why some routes are favored by airlines relatively to others. We estimate
equation (1) allowing for route-level clustering of the errors, i.e. allowing for correlation in
the error terms over time within routes.

=========================
Insert Table 5 about here

=========================

Table 5, column 3, reports the results for the DID model as specified in (1). The specifi-
cation in column 1 does not account for time-varying nor route-varying factors. The second
column accounts for time-varying but not for route-varying factors. Because the specifi-
cations in the first two columns do not include year and route fixed effects they do not
correspond to implementing a difference-in-differences approach but they are useful for com-
parison purposes. Further, because these specifications do not include route-fixed effects,
they allow us to get a better understanding of how routes of different lengths are affected by
the entry of the HST.

Turning to the results for the specification in (1), reported in Table 5 column 3, the
negative and significant coefficient on “HST” indicates that airline presence declines with
HST presence. This points to negative spillovers from the HST to the airline industry.
However, the negative spillovers disappear for medium and long distance routes, consistent
with the HST having a larger strategic advantage relative to airlines in shorter routes.

The coefficient on the number of HST connections is positive and significant which sug-
gests that there are positive spillovers from the HST to the airline industry in routes that are
connected to the HST. These positive spillovers are negatively moderated by HST presence
as reflected in the negative coefficient for the interactions of “HST” with the number of con-
nections to the HST. These results seem sensible since we expect the benefits that airlines
derive from serving routes connected to the HST to be reduced when those routes are also
served by the HST; in the latter case, consumers may find it more convenient to not switch
modes of transportation when traveling.

The coefficient on the number of airline connections is, as expected, positive and signif-
icant, consistent with an airline’s operations in a given route being affected by its presence
in connecting routes. While this variable allows us to control in a reduced-form way for the
impact of airlines’ networks on their presence in a focal route, in the structural model spec-
ified in the next section, airlines’ strategic decisions will be explicitly modeled taking into
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account not only the evolution of each airline’s network but also those of the competitors.
The identification of the effect of the HST in airline presence in the DID approach relies

on the assumption that airline presence on treated and control routes follows the same trend
in the absence of the HST. To test for parallel trends in the case of multiple treatment and
control groups, we follow the literature (e.g., Angrist and Pischke 2009) and run falsification
tests by adding “leads” to the set of independent variables in specification (1). Specifically,
we add dummies that are equal to one for the first two pre-treatment years for each treated
route. The estimated coefficients for the two dummy variables are not significantly different
from zero (with both p-values greater than 0.20; not tabulated) suggesting that the parallel
trends assumption is satisfied.

The DID analysis described above uses all routes without HST presence as control routes
at each point in time. While this identification strategy captures overall country trends that
could cause changes in airline presence even in the absence of HST entry, there could be a
concern that different routes are subject to different local shocks. Consider, for example,
the 2008 Olympics held in the city of Beijing. It would be reasonable to expect that airlines
increased their presence in the routes connecting to this city due to this exogenous demand
shock. If, around the same time, the HST was introduced in some of these routes, then it
may seem that the HST has a positive effect on airline presence when that is not the case.
More generally, if there are local shocks that are somehow correlated with both HST and
airline presence this could bias our estimate of the causal effect of HST presence.

To address this concern, an alternative DID specification could use, for each individual
treated route, a more refined control group of routes to try to capture systematic local
differences due to reasons other than the entry of the HST. For example, Card and Krueger
(1994), in their study of minimum wage effects, and Tuchman (2019), in her study of the
effects of e-cigarette advertising, control for local trends by comparing boundary counties
or states, respectively, that are exposed to different treatments but that are expected to
experience the same unobservable shocks due to their geographical proximity. Unfortunately,
because our analysis is at the level of a route (defined as a city-pair), the lack of well-defined
“market" boundaries does not allow us to account for unobservable local trends by using a
geographic-border strategy as the one pursued in the studies above.

Instead, we rely on an insight from Goolsbee and Syverson (2008) in their study of how
incumbent airlines respond to the threat of entry. They use characteristics of routes that
share the same endpoints as a focal route to control for potential unobserved shocks in the
focal route. We adapt this idea to our DID setting by refining the definition of the control
groups used in the analysis and selecting as control routes only those that share one of the
same endpoints (i.e., airports) as the treated routes but which do not overlap with HST
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routes (which are “treated”).30

We illustrate the idea behind the selection of the control routes in Figure 7. If we consider
as the focal route the city-pair AB, which overlaps with the HST, we can use routes AC and
BD as control routes. The identifying assumption is that the control routes AC and BD
potentially experience the same unobserved demand and supply shocks as the focal treated
route AB. Returning to the 2008 Olympics example mentioned above, the intuition behind
this approach is that, by comparing routes that are connected to Beijing but which differ in
terms of HST presence, we are able to measure the effect of HST presence on airline decisions
after netting out the 2008 Olympics effect.

=========================
Insert Figure 7 about here

=========================

More specifically, for each route where the HST was introduced sometime between 2007 and
2015 we find two control routes that satisfy the following criteria. First, the two control
routes (routes AC and BD in the diagram in Figure 7) cannot overlap with the HST (i.e.,
these routes do not experience HST entry at any point in time). In addition, to make sure
that the control routes are not substitutes of the routes which overlap with the HST, which
would make them “treated” to some degree, we restrict the distance between the non-shared
endpoints of the treated and each of the control routes (cities A and D, or cities B and
C, in the diagram in Figure 7) to be more than 300 km (186 miles).31 Lastly, and more
importantly, each control route must share one of the end cities with the treated route.

To implement this approach we adjust the set of fixed effects included in specification in
(1) by adding route fixed effects to control for the time invariant differences across routes
and allow each route to have its own average level of airlines present, and group-year fixed
effects to allow each group of treated and two control routes to have its own flexible trend in
airline presence and thus account for any unobserved local shocks. This analysis also has the
added benefit of addressing the concern pointed out by de Chaisemartin and D’Haultfœuille
(2022) which occurs in staggered DID designs with multiple time periods and treatment
groups like in the two-way fixed effects design in equation (1), with results reported in Table
5, column 3. That is because we use as control routes the routes in which the HST did not

30More precisely, this can be considered a “Matching-DID approach” in which a matching method is used
to select the control routes. (Further details on this method can be found in Blundell and Costa Dias 2000).
We also used a matching approach without combining it with DID (more specifically, we used both exact
matching and propensity-score matching) and the results obtained are consistent with the ones reported
using the DID approach.

31Robustness checks with 400 and 500 km cut-offs provide similar results and are available upon request
from the authors.

20



enter. Our method is similar to the method proposed by Callaway and Sant’Anna (2021)
with the difference that they used propensity score matching to specify the control routes
and we do the matching using criteria more tailored to our context and more reflective of
the analysis in Goolsbee and Syverson (2008).32

Column 4 of Table 5 shows the results. Note that the sample size decreases to 7, 884

route-year observations when compared to the DID results reported in column 3. This is
a direct result of having further refined the definition of what constitutes a control route
which naturally restricts the set of routes included in the analysis.33 Despite the smaller
sample size, this analysis can be useful as a stricter test of whether and how HST presence
affects airlines decisions. The results are directionally, and for the most part quantitatively,
consistent with the results from the main DID specification reported in column 3. Namely,
we find that the presence of HST may have a positive or negative impact on airline presence,
depending on the length of the route, and that connecting to HST lines has a positive impact
on the number of airlines serving a route. Again, we test for the parallel trends assumption
in the same manner as in the main DID specification and we find evidence that the common
trend assumption cannot be rejected.

We further conduct a variety of checks to test the robustness of the differences-in-
differences results. First, we carry out the analysis at the airline-route-month level (as
opposed to at the airline-route-year as in the main specifications) and restrict the set of
treated routes such that we only include data for treated routes for one month before the
entry of the HST and one month after the introduction of the HST. We do this to alleviate
concerns related with route-specific trends which may generate a spurious relationship be-
tween the entry of the HST and airlines’ decisions: for example, it could be the case that
both the HST and airlines tend to enter routes where there is expected to be a growth in
demand (alternatively, it could also be that the HST was designed to enter some routes to
slow down or reverse the expected decrease in demand). If this is the case, and the entry/exit
decisions of the two modes of transportation are truly independent of each other, then it is
unlikely that their entry/exit decisions will happen at the same time. This can be tested by
examining the airlines entry/exit decisions in a route right before and after the introduction
of the HST. Therefore, by comparing the airlines’ entry decisions shortly before and after
the introduction of the HST, we can provide stronger evidence of the causal impact of the
HST on air carriers.

32We have however tested the robustness of our analysis using the method proposed by Callaway and
Sant’Anna (2021) and find that the main results are consistent with our specification.

33From the the 471 routes that experience HST entry during the sample period, we are able to find control
routes for 292 of them. This means we have a total of 876 routes over a nine-year period, corresponding to
7, 884 observations.
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Second we use the number of flights operating in a route as a dependent variable in
equation (1) instead of the number of airlines. Finally, we re-run our analysis using all
flights that operate longer than three months (as opposed to including only those that
operate longer than one year).

The results of the different robustness checks are reported in Appendix A. We find that
our results are robust across the different specifications and sample definitions.

6 Structural Model

The previous section establishes that the entry of the HST had an impact on airlines’ route
decisions. Here, we structurally estimate a model in which airlines make route network deci-
sions as a function of their competitors’ actions and of the presence of the HST. This allows
us to quantify the impact of the entry of the HST on different markets (i.e., routes) depending
on their characteristics, and to determine how the heterogeneous impact of the HST affects
airlines’ networks configurations. The model also allows us to investigate counterfactual
scenarios.

6.1 Overview

Airlines’ route decisions are difficult to model. Airlines are forward-looking strategic players
that maximize profits while anticipating the impact of current route decisions on current
and future payoffs and their competitors’ reactions. Further, because airlines operate in a
complex structure of route connections, individual-route decisions have implications for the
entire route network which need to be taken into consideration.

We setup an empirical entry model to account for the strategic nature of airlines’ com-
petition, following the seminal airline paper by Berry (1992). Here, firms play a game of
strategic interaction and decide in which markets/routes to operate taking into account their
competitors’ decisions. Market structure data describing which routes the different airlines
operate in is enough to extract relevant information about firms’ profits; this is appealing
because, in our setting, price and quantity data are not available.

We depart from Berry (1992), who uses a static model of entry with independent markets,
in that we account for both the dynamic nature of airlines’ competition and for the network
structure of routes. We partly follow Aguirregabiria and Ho (2012), who were the first to
propose a dynamic game of network competition and to estimate it with US airline industry
data.

Different from Aguirregabiria and Ho (2012), who model airlines’ decisions in discrete
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time, we adopt a continuous time framework. Doraszelski and Judd (2012) first showed
the computational advantages of casting dynamic games in continuous time. ABBE further
developed a continuous time framework for dynamic discrete choice models. In our context,
a continuous time framework a la ABBE allows us to deal with the lack of regularity in
airlines’ decision making and to take advantage of our high frequency data: routes are
not added/dropped at specific time intervals and can be frequently and relatively flexibly
added and dropped by airlines. Also, this methodology makes it possible for us to conduct
counterfactuals despite the high-dimensionality of our dynamic game.34

6.2 Setup

There are N airline companies, indexed by i = 1, ..., N , in the industry that provide flights
between different cities. A route r ∈ {1, ..., R} is defined as a non-directional city-pair,
with R denoting the total number of possible routes between all of the different cities with
airports in the data. Time is continuous and indexed by t. A stochastic independent Poisson
arrival process governs when and which airline can move. With each move arrival, an airline
may make decisions regarding the configuration of its network. In the context of airline
entry and competition, a random move arrival process might reflect the stochastic timing of
negotiations with airports for gate occupancy, delays in the processes for obtaining permits,
and firms’ staff recruiting and flight-capacity arrangements, for example.

There is also a Poisson process that controls changes in route characteristics exogenous
to airline’s decisions (e.g., HST presence and GDP), which we discuss in more detail below.
We refer to such changes as moves by nature.

Let xirt ∈ {0, 1} be an indicator variable in which xirt = 1 if airline i provides direct
flights in route r at time t and xirt = 0 otherwise.35 The network of an airline i at time t is
therefore defined by the collection of xirt for all routes, i.e. Nit ≡ {xirt : r = 1, ..., R}. The
vector Nt ≡ {Nit : i = 1, ..., N} denotes the network for the entire industry at time t.

The flow payoff that airline i gets from route r at time t, denoted as Πirt(Nt,Zt), is
a function of both the network of the industry Nt and of the exogenous characteristics of

34A key advantage of a continuous time framework is that it reduces the computational burden associated
with solving a dynamic game. In a continuous time framework, the probability of two events happening
together is close to zero. This implies that players make decisions sequentially, as opposed to simultaneously.
As a result, for any given state, the number of possible state changes in the next period increases only
linearly with the number of players, rather than exponentially as is the case in discrete time frameworks. A
smaller number of possible future states implies, in turn, that the transition matrix among states is sparse,
which reduces the computational burden of solving for the equilibrium. For additional benefits of using a
continuous-time framework in a discrete-choice setting please see ABBE (section 6.4).

35As routes are non-directional, we assume that if an airline provides flights from one city to another, it
also provides flights in the opposite direction.
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the routes that affect the airline’s demand and costs (i.e., nature), given by the vector
Zt. The vector Zt ≡ {zrt : r = 1, ..., R} is a vector that includes the information on the
variables exogenous to airlines’ decisions for all routes at a given time t. Note thatZt includes
information on the HST network. HST presence is an exogenous variable because, consistent
with what we discussed in Section 3.2, unlike in the airline industry, where companies can
modify their routes relatively frequently, the expansion of the HST route network is, for the
most part, predetermined.

When it is airline i’s turn to move, the airline decides whether to make changes to its
existing network, Nit. Denote j ∈ A = {−1, 0, 1} as the action airline i can take in a given
route r. Specifically, for each route, airline i can choose to do nothing (j = 0), to provide
direct flights if the route is not being served (that is, to enter; j = 1), or to stop providing
direct flights if the route is being served (that is, to exit; j = −1). Note that not all of the
actions in A are available at each time; for example, if the airline is not operating in a given
route, the only actions available are j = 0 and j = 1. Each action j is associated with an
instantaneous payoff given by ψijrt+εijrt, where ψijrt is the mean cost associated with action
j at time t for airline i in route r, with |ψijrt| <∞, and εijrt is a private-information payoff
shock, which is assumed to follow a type I extreme value distribution and is i.i.d. distributed
across airlines, actions, routes, and time.

Note that we do not model airlines’ decisions on how many flights to operate in a given
route as this would be computationally intractable. This means that we will not be able to
make claims regarding how the presence of the HST affects flight intensity in different routes.
However, studying the effect of the HST on flight intensity tends to be of second order when
compared to the effect of the HST on airlines’ network configurations. In fact, conditional on
entry, in about 60% of the routes, airlines only operate one flight (not tabulated). Therefore,
airlines’ flight frequency decisions should be well captured by their decision to operate or
not in a given route.

The forward-looking strategic behavior of the firms, together with the network consid-
erations that are intrinsic to airlines, makes it infeasible to estimate the game described
above without further assumptions given the size of the state space (Nt,Zt). Considering
the possible network configurations captured in Nt alone, and because at each point in time
an airline has the option to operate or not in each route, and given that there are 4 airlines
and 2, 278 routes, would result in a state space of size 24×2,278, which is computationally
intractable.

To reduce the dimensionality of the problem, we adopt two assumptions previously used
by Aguirregabiria and Ho (2012). First, we assume that each airline makes decisions re-
garding its network in a decentralized manner. That is, an airline makes decisions route by
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route, using local managers, who take the situation in other routes as given. This means
that, instead of making decisions for all routes simultaneously, an airline only considers one
route at a time.36 In the continuous time setting, this implies that, with each Poisson move
arrival, an airline may decide whether to serve a route or not.

Second, to further reduce the dimensionality of the state space, we adopt a sufficient
statistics assumption in the same spirit of Aguirregabiria and Ho’s that specifies that the
information contained in the state variables (Nt,Zt) can be aggregated into a vector wirt
with a much smaller set of possible values. This implies that the strategy function of a local
manager for a given route depends on the state variables (Nt,Zt) through a vector wirt.37

For example, instead of considering the entire network configuration Nt, the local manager
may consider solely the state of each individual competitor in the focal route together with
the number of connections that each firm has between the focal route and other routes.38 In
a similar manner, the set of exogenous variables Zt also gets summarized into a smaller set
of variables. Section 6.4, where we discuss the empirical specification of the model, presents
the detailed list of variables contained in wirt.

Imposing the two assumptions above does not imply that airline decisions in different
routes/markets are independent from each other, as is commonly assumed in strategic entry
models (e.g., Berry 1992, ABBE). That is because there are variables in the vector wirt that
affect the decision of each local manager and that, as discussed in Aguirregabiria and Ho
(2012), depend on decisions previously made by other local managers.

6.3 Value Functions and Equilibrium

Airlines are forward-looking and discount future payoffs at rate ρ ∈ (0,∞). For simplicity,
and without loss of generality, we index the state of each route r at each instant t by an
element k of some finite state space κ = {1, ..., K}. This means that the state of any route at
each instant can be characterized by the vector wk, presented in the previous section, which
contains firm and route information. While in state k, airline i receives flow payoff Πik. Let
σijk denote the probability that airline i optimally chooses action j in state k. This action
may result in a deterministic state change. Let l(i, j, k) denote the continuation state that

36Similar assumptions have been made in other studies to deal with high-dimensional problems (e.g.,
Schiraldi, Smith, and Takahashi 2012, Sweeting 2013, He, Whited, and Guo 2021).

37Several other papers in addition to Aguirregabiria and Ho (2012) use similar assumptions to address
the state-space dimensionality problem (e.g., Gowrisankaran and Rysman 2012, Weintraub, Benkard, and
Van Roy 2006).

38Here we depart slightly from Aguirregabiria and Ho (2012) in that we allow for the state of each
individual competitor to be considered by each player (as opposed to summary statistics on competition
indicators, such as the total number of competitors present in the route, for example, as in Aguirregabiria
and Ho 2012).
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arises after airline i makes decision j in state k. We define j = 0 to be a costless continuation
choice with instantaneous cost ψi0k = 0 and l(i, 0, k) = k, for all i and k.

We assume a common rate parameter, λ, for the Poisson arrival processes that govern
when and which airline can move. The state of a given route can change not just due to
the action of each of the local managers (if a local manager decides to pursue an action
j 6= 0) but also due to other variables in wk driven by nature’s movements or the actions
of local managers in other routes. Accordingly, in each state, there are, in addition to N
independent, competing Poisson processes with rate λ, which generate move arrivals for
each of the N players, a Poisson process with rate λ that governs movements by nature. We
assume that moves by nature can be captured by a finite-state Markov jump process on κ by
some K ×K intensity matrix Q. Each element of Q, denoted by qkl, is the hazard rate for
transition from state k to state l and is nonnegative and bounded.39 Further, and because
decisions made by local managers in other routes can affect a given route’s state, we allow
for a competing Poisson process with some arrival rate λ′ to generate state changes caused
by decisions made in other routes. This arrival rate λ′ is a function of the rates λ that govern
the move arrivals for each of the players in other routes and of the mapping between those
moves and the summary statistics considered by the local manager.

Let ζi denote the beliefs of airline i’s local manager regarding the actions of rival airlines
in a particular route, given by a collection of (N − 1) × J ×K probabilities ζimjk for each
player m 6= i, state k and choice j. Further, let ζ ′ikl denote the beliefs regarding the evolution
of the summary statistics in the vector wk which pertain to the decisions made by other local
managers of airline i and by the local manager’s competitors’ in other routes.40 Finally, let
Vik denote the expected present value for airline i being in state k and behaving optimally
at all points in the future given beliefs ζi and ζ ′i. For small increments h, under the Poisson
assumptions, the probability of an event with rate λ occurring is λh. Given the discount
rate ρ, the discount factor for such increments is 1/(1+ρh). Thus, for small time increments

39Note that the elements ofQ which correspond to state changes that are not driven by nature’s movements
take the value zero.

40We use the notation ζ ′ to highlight that, in a given route, the beliefs regarding the summary statistics
based on the actions of the players in connecting routes depend on the ζs in those routes. The term ζ ′

does not have subscript mj (as opposed to ζ) because it captures the expectation regarding the evolution of
summary statistics which do not depend on the specific actions (or expectations regarding such actions) of
individual players in other routes. Note that, even though, for each player i, there is a matrix K by K with
elements ζ ′kl, l = 1...K, the elements in this matrix which correspond to state changes that are not driven
by movements in the decisions made by players in other routes take the value zero.
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h, the present discounted value of airline i being in state k in a particular route is given by

Vik =
1

1 + ρh

[
Πikh+

∑
l 6=k

qklhVil +
∑
m6=i

λh
∑

j∈{−1,1}

ζimjkVi,l(m,j,k) + λ′h
∑
l 6=k

ζ ′iklVil

+ λhE max
j

[
ψijk + εijk + Vi,l(i,j,k)

]
+

(
1−

∑
l 6=k

qklh−Nλh− λ′h
)
Vik

]
.

In the expression above, there are six terms within the square brackets. The first term
refers to the flow profits that the local manager of airline i gets from being in state k,
and the remaining terms correspond to the expected discounted payoffs associated with all
possible states that may occur with a time increment h. More specifically, the second term
corresponds to rate-weighted values due to state changes caused by nature’s moves, and the
third and fourth terms correspond to rate-weighted values associated with states that occur
due the focal actions of the local manager’s competitors and of the players in other routes,
respectively. The fifth term corresponds to the instantaneous payoffs obtained when airline
i’s local manager makes a move in state k and the expected future value associated with the
state change caused by that move. The expectation in this term is with respect to the joint
distribution of εik. Finally, the sixth term corresponds to the value associated with a route
remaining in state k after a increment of time h.

Rearranging and letting h→ 0, Vik can be written as

Vik =
Πik+

∑
l 6=k qklVil+

∑N
m6=i λ

∑
j∈{−1,1} ζimjkVi,l(m,j,k)+λ

′∑
l 6=k ζ

′
iklVi,l+ E max

j
[ψijk+εijk+Vi,l(i,j,k)]

ρ+
∑

l 6=k qkl+
∑N

m 6=i λ
∑

j∈{−1,1} ζimjk+λ+λ′
∑

l 6=k ζ
′
ikl

. (2)

We focus on Markov perfect equilibria in pure strategies, as is standard in the empirical
literature on dynamic entry games. A Markov strategy δi for player i is a mapping which
assigns an action from A to each state (k, εi). Given beliefs for each player {ζi : i = 1, ...N},
and a collection of model primitives, a Markov strategy for firm i is a best response if

δi(k, εi; ζi) = j ⇐⇒ ψijk + εij + Vi,l(i,j,k)(ζi) ≥ ψij′k + εij′ + Vi,l(i,j′,k)(ζi) ∀j′ ∈A. (3)

Given the distribution of choice-specific shocks, each Markov strategy δi implies the
following response probabilities for each choice in each state

σijk = Pr[δi(k, εi; ζi) = j|k]. (4)

A Markov perfect equilibrium is thus defined as a collection of stationary policy rules
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{δi : i = 1, ..., N} and beliefs {ζi : i = 1, ...N} in which (3) holds for all i, k, and εi and the
beliefs ζmijk,m 6= i, are consistent with the best response probabilities generated by (4).

Note that here the beliefs of each local manager and its competitors are intrinsically
linked to the beliefs of the local managers in other routes through the expectations that each
local manager has to form regarding the summary statistics that govern the state of the route
for which the manager is responsible. This means that the above defined equilibrium is an
equilibrium at the network level which contrasts with other literature that regards markets
as being independent from each other.

6.4 Empirical Specification and Implementation

6.4.1 State Variables and Action Variables

We focus on the top four airlines (N = 4) and the top 68 cities in China. So, in total, there
are R = 68× 67/2 = 2, 278 possible routes.

The state of a route at each instant can be summarized by a vector wk containing informa-
tion on two sets of variables. The first set relates to variables on the airlines’ network config-
urations which include the airlines that operate in that route, xk = {xik ∈ {0, 1} : i = 1, ...4}
and the number of connecting routes for each airline xck = {xcik ∈ N : i = 1, ...4}.41 The sec-
ond set of variables relates to the exogenous characteristics of a given route, namely indicator
variables for the presence of fast trains (Fastk) and bullet trains (Bulletk), the number of
fast train lines and bullet train lines connecting to either of the route’s endpoint cities (Fastck
and Bulletck, respectively), the length of the route, lengthk, the average GDP for the route’s
endpoint cities gdpk, the average growth-rate of the GDP in the endpoint cities gdpgrowthk
whether a route is regulated Regk, and whether each airline is exempt from regulation on

41A connecting route is a route which shares one of the endpoint cities with the focal route. The total
number of connecting routes of a given route is given by the sum of the routes that connect to each of the
focal route’s endpoints. For example, if a route connects city A and city B, and in state k, airline i offers
direct flights in X routes that are connected to city A and in Y routes that are connected to city B, then xci
is equal to X + Y .
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that route Exeik.42 The vector wk is then given by

wk =(x1k, ..., x4k, x
c
1k, ..., x

c
4k,

Fastk, Bulletk, Fast
c
k, Bullet

c
k, lengthk, gdpk, gdpgrowthk, Regk, Exe1k, ..., Exe4k).

So, each value of k represents an encoded state vector, and the function l(i, j, k) gives the
continuation state that arises after airline i takes action j in state k. In addition, each route
is characterized by a time-invariant unobserved route type s, which is observed by airlines
but not by the econometrician.43 It follows then that the full state vector at any instant can
be written as (wk, s).

6.4.2 Flow Profits and Choice-Specific Payoffs

We follow standard convention in the empirical entry literature and specify the flow payoff
in terms of underlying latent profits because demand side data such as prices and seat
occupancy is not available. The flow payoff of a local manager of airline i is thus specified as
a linear function of the summary statistics that characterize an airline’s and its competitors’
route networks as well as of exogenous variables such as the city-pair average GDP, the
length of the route and the summary statistics that characterize the HST network. The flow
payoff also depends on the unobserved route-type s, which captures the unobserved tastes
of consumers for different modes of transportation in a given route.44

42To reduce the dimension of the state space we discretize the number of airline connections into five
bins ([0, 5], [6, 15], [16, 25], [26, 35], [36,∞)). Similarly, the number of HST connections are discretized
into three bins ([0], [1, 3] and [4,∞)). The discretization was done such that there was a reasonable number
observations in each category. To characterize route’s length, we use three indicator variables to denote short
routes (≤ 600 km), medium routes (between 600 km and 1, 200 km) and long routes (> 1, 200 km). This
allows airline payoffs to change non-linearly and non-monotonically with route length. Finally, we discretize
the average city-pair GDP into five quantile-based bins and the average city-pair GDP growth-rate into three
quantile-based bins (corresponding to low, medium and high growth).

43We use S = 5 points of support for the route’s unobserved type,
s ∈ {−1.3998,−0.5319, 0.0, 0.5319, 1.3998}, based on a discrete approximation to a standard normal
random variable.

44Note that there are no airline specific intercepts in the payoff function. This is driven by computational
reasons (especially when implementing the counterfactual simulations) and by the fact that the purpose
of the paper is not to determine the specific effect of the HST entry on each of the airlines but rather on
the entire industry. This is equivalent to making a symmetry assumption which is commonly used in the
literature (e.g., Doraszelski and Judd 2012 and Ryan 2012). Nonetheless, we relax the symmetry assumption
in a robustness check in which we allow for airline-specific intercepts. See Appendix B. The estimated
parameters when this assumption is relaxed are consistent with the estimates from the base model. To
illustrate what the symmetry assumption implies, suppose there are 5 firms, and each firm has three states,
represented by numbers 1, 2 and 3, respectively. We use a 5×1 vector to denote the industry state, of which
the i’s cell corresponds to the state of firm i. The symmetry assumption implies that the strategy of firm
1 in state (3, 1, 1, 2, 1), will be the same as that of firm 3 in the state (1, 1, 3, 2, 1), because firms share the
same policy function. This assumption also implies that the strategy followed by firm 1 in state (1, 1, 3, 2, 1)
will be the same as the one in state (1, 3, 2, 1, 1).
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The flow payoff to airline i in state (k, s) can be written as

uik = β0 + β1

∑
m6=i

xmk + β2x
c
ik + β3

∑
m 6=i

xcmk + β4Fastk + β5Bulletk

+ β6Fast
c
k + β7Bullet

c
k + β8Fastk × Fastck + β9Bulletk ×Bulletck + β10gdpk + β11lengthk

+ β12Fastk × lengthk + β13Bulletk × lengthk + β14s.

(5)

The choices regarding the variables included in the flow payoff and its functional form
follow mostly from the empirical analysis conducted in Section 5. Namely, we allow airlines’
payoffs in a route to depend on the number of (own and competitors’) routes that connect
to that route. Further, to better quantify the impact of the HST on airlines’ decisions, we
allow for heterogeneous effects of different types of HST (i.e., Fast and Bullet trains), and
we interact the presence of the HST with the number of connecting HST lines to capture
the fact that we expect the benefits that airlines derive from serving routes connected to the
HST to be negatively impacted if those routes are also served by the HST. Finally, we also
interact the presence of the HST with route length to allow for the effects of the HST to
be different depending on the route length. The flow payoff from not operating flights in a
given route is normalized to 0.

Airlines pay a sunk cost to enter a route. This cost depends on the unobserved route
type, s, on whether the route is a government-regulated air route, and on airline-specific
characteristics, such as the number of routes connected to the focal route, and on whether
the airline is exempt from route regulation. Airlines’ entry costs may be higher in regulated
routes because the application to enter a regulated route has to fulfill several additional
requirements (when compared to a non-regulated route) and is thus costly. Also, when en-
tering a route, airlines which operate in connecting routes, tend to obtain more advantageous
entry terms (such as lower gate fees, for example). As in Aguirregabiria and Ho (2012), the
value associated with exiting a route is assumed to be zero. Therefore, the choice-specific
instantaneous payoffs ψijk can be written as

ψijk =

η0 + η1 × s+ η2 ×Regk + η3 × Exeik + η4 × xcik if j = 1

0 otherwise,
(6)

where Reg is an indicator variable which equals one if the route is regulated and zero other-
wise, and Exei is an indicator variable which equals one if the route is regulated but airline
i is exempt from the regulation, and zero otherwise.45

45Similar to what we assume in the flow payoff function, here there are no airline-specific intercepts (per
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The structural parameters of interest to be estimated are the coefficients of the flow
payoff function together with the parameters of the instantaneous payoffs

θ = (β0, ..., β14, η0, ..., η4).

6.5 Model Estimation and Identification

We follow ABBE and estimate the structural parameters using a conditional choice probabil-
ity (CCP) based approach with continuous-time data. This approach proceeds in two steps.
In the first step, we estimate the reduced-form hazards that capture the dynamics in entry
and exit decisions for airlines in each route, as well as those related with the moves of the
summary statistics, which capture the players’ decisions in other routes, and with the moves
of the exogenous nature variables such as GDP and presence of HST. At the same time we
also obtain estimates for the unobserved route types. In the second step, we estimate the
structural parameters taking the reduced-form hazards as given.

6.5.1 Step 1: Estimating the Reduced-form Hazards

We estimate the probabilities of entry (if the airline is not present), exit (if the airline is
present) and doing nothing for an airline in a route using a multinomial logit sieve. Let
σ̃ij(k, s, α) denote the reduced form probability of airline i making choice j in state (k, s),
where α is a vector with the parameters to be estimated. The probabilities σ̃ij(k, s, α) take
the following form

σ̃ij(k, s, α) =
exp(φj(k, s, α))∑

j′∈A exp(φj′(k, s, α))
, (7)

where φj(k, s, α) is a flexible linear function of the state variables. The variables included
in this function are a constant, the total number of competitors and its square, the number
of own connecting air routes and its square, the total number of competitors’ connecting
routes and its square, the presence of fast trains, the presence of bullet trains and the
interaction of these indicator variables with route length indicator variables, the number of
connecting fast train lines interacted with the presence of fast trains, and the number of
connecting bullet train lines interacted with the presence of bullet trains. We also include
indicator variables for route length, the average city-pair GDP, the GDP growth-rate level
(low, medium and high), and the unobserved route type. In addition, we control for the

the symmetry assumption discussed above). Nonetheless, we relax the symmetry assumption in a robustness
check in which we allow for entry costs to be airline-specific. The estimated parameters are consistent with
the estimates from the base model (results are available upon request from the authors).
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following variables interacted with an indicator for route entry: constant, whether a route is
subject to regulation, whether an airline is exempt from regulation in the case of a regulated
route, the number of own connecting air routes, and the unobserved route type.46

The probabilities of movement of each of the exogenous variables caused by “nature” are
modeled as follows. The probability of each of the HST (fast and bullet trains) changing from
not present to present in a given route is estimated using two binary logit models (one for fast
and one for bullet trains) with independent variables: constant, number of fast and bullet
trains connections, average city-pair GDP, indicator variables for route length, and the GDP
growth-rate level, and the unobserved route type. The probability of the number of HST
(fast and bullet trains) connections increasing or decreasing in a given route is estimated
using two binary logit models (one for fast and one for bullet trains) with independent
variables: constant, indicator variables for whether fast or bullet trains are present, average
city-pair GDP and GDP growth-rate level. These specifications for the probabilities of the
HST being present and the HST’s number of connections capture the uncertainty around
the planning of the HST that we discussed in section 3.2. The transition probabilities of
the average city-pair GDP (going up or down) are estimated using the frequency of city-pair
GDP transitions between 2006 and 2016 for the markets in the sample. We use q̃l(k, s, α0)

to denote the empirical estimate of the hazard rate for nature’s transition from state k to
state l with l 6= k in a route with unobserved type s.47

We focus on each airline’s total number of routes connected to a given route to capture
the actions of the players in other routes in a summarized way, and estimate the transition
probabilities of the number of connecting routes (going up or down) based on their empirical
distribution. We use σ′l(k) to denote the transition probability of the total number of con-
necting routes when it transitions from state k to l. The empirical estimate of such transition
probability is defined as σ̃′l(k).

The complete set of hazards estimated in Step 1 is given by

h(α0, α) = (q̃l(1, 1, α0), ..., q̃l(K,S, α0), λσ̃ij(1, 1, α), ..., λσ̃Nj(K,S, α), λ′σ̃′l(1), ..., λ′σ̃′l(K)),

∀l 6= k,∀j ∈A.

In each route, the movement of airlines, nature and the summary statistics of the con-
46In Step 1, we jointly estimate the policy function and the probability of a route being of a specific

unobserved type.
47Note that we proceed with a slight change of notation to accommodate for the time-invariant unobserved

route types in our empirical specification. More specifically, qkl in Equation (2) is replaced with ql(k, s) to
denote the hazard rate for transition from state k to state l in a route with unobserved type s. Likewise,
σijk is replaced by σij(k, s) to denote the probability that airline i optimally chooses action j in state k in
a route with unobserved type s.
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necting routes can be captured by a joint Poisson process.48 Therefore, in state k, conditional
on the market being of unobserved type s, the probability of the next state change within
τ units of time follows the CDF of an exponential distribution with rate parameter equal to
the sum of the state transition rates for nature, the hazards of the non-continuation actions
for each player, and the sum of the state transition rates for the summary statistics:

1− exp

−τ
∑

l 6=k

ql(k, s) +
∑
i

λ
∑

j∈{−1,1}

σij(k, s) + λ′
∑
l 6=k

σ′l(k)

 . (8)

Differentiating with respect to τ gives the density of the time of the next state change:

(∑
l 6=k ql(k, s) +

∑
i λ
∑

j∈{−1,1} σij(k, s) + λ′
∑

l 6=k σ
′
l(k)
)
exp

[
−τ
(∑

l 6=k ql(k, s) +
∑

i λ
∑

j∈{−1,1} σij(k, s) + λ′
∑

l 6=k σ
′
l(k)
)]
. (9)

Conditional on the state change, the probability that player i takes action j is given by

λσij(k, s)∑
l 6=k ql(k, s) +

∑
i λ
∑

j∈{−1,1} σij(k, s) + λ′
∑

l 6=k σ
′
l(k)

. (10)

Taken together, the likelihood of the next stage change occurring after an interval of length τ
while being the result of player i taking action j is the product of the previous two equations:

λσij(k, s)exp

−τ
∑

l 6=k

ql(k, s) +
∑
i

λ
∑

j∈{−1,1}

σij(k, s) + λ′
∑
l 6=k

σ′l(k)

 . (11)

We can similarly construct the likelihood of nature and the summary statistics going from
state k to state l as

ql(k, s)exp

−τ
∑

l 6=k

ql(k, s) +
∑
i

λ
∑

j∈{−1,1}

σij(k, s) + λ′
∑
l 6=k

σ′l(k)

 , (12)

and

λ′σ′l(k)exp

−τ
∑

l 6=k

ql(k, s) +
∑
i

λ
∑

j∈{−1,1}

σij(k, s) + λ′
∑
l 6=k

σ′l(k)

 , (13)

respectively.
48The summary statistics reflect the decisions of airlines in connecting routes, therefore they also follow

Poisson processes.
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For each route r ∈ 1, ..., R, we observe Tr events over the continuous time interval [0, T ].49

Denote krn (n ∈ {1, ...Tr}) as the state immediately prior to the nth event in route r and
denote trn as the corresponding time at which that event occurs. The holding time of the
nth event for route r, τrn, can therefore be defined as τrn = trn − tr,n−1.

Denote Irn(i, j) as the indicator variable which equals one if player i takes action j in the
nth event at route r. Further denote Iqrn(k, l) and I ′rn(k, l) as the indicator variables which
equal one if the state changed from k to l (k 6= l) during the nth event at route r due to
nature or due to changes in the summary statistics which capture the actions in connected
routes, respectively. Now, conditional on a route being of unobserved type s, the likelihood
for the single event n in route r is given by:

L̃rn(h(α0, α); s) =∑
l 6=krn

Iqrn(krn, l)q̃l(krn, s, α0) +
∑
i

λ
∑

j∈{−1,1}

Irn(i, j)σ̃ij(krn, s, α) + λ′
∑
l 6=krn

I ′rn(krn, l)σ̃
′
l(krn)


× exp

−
∑
l 6=krn

q̃l(krn, s, α) +
∑
i

λ
∑
j 6=0

σ̃ijr(krn, s, α) + λ′
∑
l 6=krn

σ̃′l(krn)

 τrn

 .
(14)

Following ABBE, we control for the unobserved route type using mixture distributions.
We discretize the standard normal distribution into five points and calculate the probability
of each route being at each point as a function of the initial conditions of the routes. We
specify this probability as an ordered probit which we estimate using the observed value of
the following variables at the beginning of the period studied: total number of flights, total
number of connecting routes, average GDP growth rate of the city-pair, length of the route,
and an indicator variable that captures whether the route is regulated.

Denote kr0 as the initial state of route r. Let π(s, kr0) be the probability of route r being
of type s given initial condition kr0. The likelihood function therefore integrates over the
distribution of unobserved states. The maximum likelihood estimate then becomes

(α∗, π∗) = arg max
α,π

R∑
r=1

ln

(∑
s

π(s, kr0)
Tr∏
n=1

L̃rn(h(α); s)

)
. (15)

6.5.2 Step 2: Estimating the Structural Parameters

In Step 2 we take the estimated hazards h(α̃0, α̃) and the probabilities of the routes being in
each of the unobserved states from Step 1 as given and use these to estimate the structural

49This includes the “event” at time T , where it is possible that nothing happens.
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parameters which underlie the flow payoffs u and the instantaneous payoffs ψ. To do so, we
first approximate the value function in a closed-form inversion step. This approximate value
function is then used in a likelihood criterion function to estimate the structural parameters.

We use Proposition 6 in ABBE to express the value function represented in equation (2)
as a function of the structural parameters and the reduced form hazards h(α̃0, α̃) from the
first stage. This allows us to eliminate the value functions on the right-hand side of equation
(2), such that no fixed point problem needs to be solved in the estimation. Applying this
proposition, the empirical counterpart of the value function in (2) can then be re-written as

Ṽi(θ; s) =

[
(ρ+Nλ+ λ′)I −

N∑
m=1

λΣm(σ̃m(s))− λ′Σ′(σ̃′)− Q̃(s)

]−1

[ui(θ) + λEi(θ)], (16)

where σ̃i(s) is defined as a set that collects σ̃ij(k, s, α) for all j ∈ {−1, 0, 1} and k ∈ κ,
and Σi(σ̃i(s)) denotes the K × K state transition matrix induced by the actions of player
i given the estimated choice probabilities in Step 1. Similarly, Σ′(σ̃′) and Q̃(s) represent
the empirical transition matrices for the summary statistics and nature, respectively. I is a
K×K identity matrix. ui(θ) is a K×1 vector with the kth element being uik. Finally, Ei(θ)
is a K × 1 vector where each element k is the ex-ante expected value of the instantaneous
payoff associated with choice j made in state k,

∑
j σ̃ij(k, s, α)[ψijk + eij], and eij is the

expected value of εij at state (k, s) given that choice j is optimal for player i.
Note that, to avoid inverting the K×K matrix in equation (16), ABBE use their Propo-

sition 4 (instead of Proposition 6, as we are doing here). The finite dependence property
of Proposition 4 allows ABBE to re-express the value function as a linear function of CCPs
and structural parameters, which avoids both having to solve for a fixed-point and inverting
(and storing) a K ×K matrix, leading to significant computational gains. Proposition 4 is
convenient but it can only be applied in models with a terminal choice (e.g., when firms exit
the market in a permanent fashion). Because airlines often exit routes which they re-enter
later on, applying ABBE’s finite dependence representation would not be appropriate in our
case. We thus do not take full advantage of the computational benefits associated with a
continuous time representation which can be achieved when the finite-dependence property
is applied. Nonetheless there are still several advantages to using a continuous time frame-
work in our setting when approximating the value function. More specifically, the matrix
inversion in equation (16) is significantly simplified due to its sparsity which comes from
the continuous-time representation. This implies significant computational gains not only
during the estimation but also when conducting policy simulations.

Because we cannot apply Proposition 4 as in ABBE, we are left with the challenge of
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inverting the matrix in equation (16). Due to the large state space in our model, this inversion
cannot be done directly. Instead, we take advantage of the fact that the second part of the
right-hand side of equation (16) can be re-written in matrix form and apply the GMRES
(generalized minimal residuals) method (Saad and Schultz 1986).50 More specifically, we
rewrite the second part of the right-hand side of equation (16) as a linear function of the
structural parameters such that ui(θ) +λEi(θ) ≡ Ziθ+ ei, where Zi is a K×O matrix, with
O being the length of the vector θ, and ei is a K × 1 vector where the kth row corresponds
to
∑

j σ̃ij(k, s, α)eij. We then obtain the products of the matrix in the first part of the right-
hand side of equation (16) with each column of the matrix Zi and the vector ei. Due to the
large state space, these products cannot be obtained using direct methods (e.g., Gaussian
or Gauss-Jordan elimination); as an alternative we use the iterative method GMRES to
calculate the resulting vectors. We set the number of iterations to 100 and allow for 20

re-starts of the algorithm. The tolerance level of the approximation is set to 1e−6 and all
of our approximations converge at this level. After applying this procedure, we are able to
approximate the value function as a linear function of the structural parameters, which are
in turn used in the second step of the estimation.

Let Ṽik(θ; s) be the approximated value function for player i at state k. With the as-
sumption that the idiosyncratic error terms in equation (3) follow an i.i.d. type I extreme
value distribution, the choice probabilities in equation (4) can be expressed as

σ̌ijk(θ; s) =
exp

(
Ṽi,l(j)(θ; s) + ψijk(θ; s)

)
∑

j′∈{−1,0,1} exp
(
Ṽi,l(j′)(θ; s) + ψij′k(θ; s)

) .
Replacing σ̃ijk in L̃rn(h(α); s) with σ̌ijk in expression (14), the new likelihood for the

single event n in route r, which is now a function of the structural parameters, can be
denoted as Ľrn(θ; s). Also, let πr(s) be the likelihood of route r being of unobserved type s
given the data. Using Bayes’s rule, we have

πr(s) =
π(s, kr0)

∏Tr
n=1 L̃rn(h(α); s)∑

s′ π(s′, kr0)
∏Tr

n=1 L̃rn(h(α); s′)
.

50GMRES is essentially an iterative method that numerically approximates the solution to a system of
linear equations. This method has been used in the chemistry and physics fields to solve extremely high-
dimensional systems. Also, and as suggested in Rust (1996), this algorithm can be applied to solve dynamic
models with large state spaces.
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The second-step maximum-likelihood estimates therefore become

θ∗ = arg max
θ

R∑
r=1

∑
s

πr(s)
Tr∑
n=1

lnĽrn(θ; s). (17)

6.5.3 Identification

Here we briefly discuss the identification strategy for the structural parameters. Our strat-
egy follows ABBE’s closely and we refer readers to Section 5.3 of ABBE for more details.
Specifically, for player i in each state k, given our assumption about ε, we can represent the
differences in the choice-specific value functions in terms of the CCPs and nature’s intensity
matrix Q. That is, Vik − Vi,l(ijk)−ψijk

= ln(σi0k)− ln(σijk). Because we can further represent
the value functions at each state using the specifications from equation (16), the LHS of
the equation can also be expressed in terms of the CCPs and Q. We are therefore left with
an equation with only payoffs that are unknown. Stacking the equations for player i across
states and actions, we have (J − 1)K rows and JK unknown payoffs.

Following common practice in the existing literature on dynamic entry games, we impose
two additional sets of restrictions to achieve identification: first, we explore the exchange-
ability in the flow payoff based on the symmetry assumption we made about the airlines (as
discussed in section 6.4.2) so that we have Πik = Πil for some l 6= k where l is the same as
state k in every dimension (including the number of competitors) except for the identity of
the competitors of player i. This allows us to add at least K linear restrictions. Second, we
also impose exclusion restrictions in the instantaneous payoffs such that the entry cost of an
airline does not depend on the states of other airlines. This again provides us with at least
K additional restrictions.

7 Structural Model Results

This section presents the structural model estimates, including the parameters from the flow
payoffs and from the instantaneous payoffs (i.e., the entry costs function). To provide an
economic understanding of the relative importance of the HST presence given the estimated
parameters, we conduct a decomposition analysis of the airlines’ profits.

7.1 Parameter Estimates and Model Fit

Table 6 presents the structural parameter estimates. We first discuss the parameters which
affect the airlines’ flow payoffs. These include the strategic-effect parameters, the parameters
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related with the effect of the HST, and the parameters that are associated with the market
characteristics.

=========================
Insert Table 6 about here

=========================

The strategic effects capture the impact of the airlines’ route networks on the airlines’ flow
payoffs. The coefficient associated with the number of own connections is positive and sig-
nificant indicating that, the more connections an airline has to a route, the more profitable
the route is. The parameter associated with the number of competitors is negative and sig-
nificant implying that the presence of competitors in a same route leads to business stealing.
However, this negative impact is dampened by the existence of competitors’ connections
consistent with the fact that air routes from competitor carriers may feed traffic to each
other.

Turning to the impact of the HST, there is a negative impact of the presence of the HST
on airlines’ flow payoffs for short routes. Further, the presence of the fast train has a larger
(negative) effect on airlines’ flow payoffs than the bullet train. This is expected given that,
in shorter routes, the speed advantage of the bullet train (relative to the fast train) becomes
less relevant, especially considering that fast train tickets are cheaper.51

Consistent with the results from the reduced form analysis in section 5, the negative effect
of the HST on airlines’ payoffs is mitigated as the length of the route increases. However, the
effects are heterogeneous depending on the train type. While the negative spillovers from fast
trains become almost negligible in medium routes, in the case of bullet trains, the spillovers
do not seem to get attenuated in longer-distance routes. This is most likely driven by the
fact that the bullet train is a better substitute to air travel than its slower counterpart, the
fast train, in relatively longer routes.

Interestingly, and especially in longer routes, overlapping with the HST (fast train) seems
to have a positive net effect on airlines’ profits. This could be due to market expansion effects
that overcome the HST competition effect, consistent with surveys that describe that, for
many HST routes in China, more than half of the traffic is “generated” – that is, traffic made
up of people doing trips that they would not have made before.52 It thus seems reasonable

51Note that, when compared to the reduced-form analysis in section 5, in the structural model, we are
able to more easily analyze the heterogeneous effects of the different types of trains (bullet vs. fast). This is
because, distinguishing between the two types of train in the reduced-form analysis would require analyzing
two types of treatment effects (instead of a single one) which would reduce the number of degrees of freedom
significantly and make it more difficult to identify the effects.

52Source: http://www.economist.com/news/china/21714383-and-theres-lot-more-come-it-
waste-money-china-has-built-worlds-largest (last accessed June 16, 2022).
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to assume that this expansion in the travel market can also have positive implications for
airlines.

Having more connections to HST lines makes a route more attractive to airlines, high-
lighting the role of connectivity for intermodal transportation complementarities. However,
for both types of HST, the positive effects of HST connectivity on airlines’ payoffs are mod-
erated by the presence of the HST in the same route. Specifically, when the HST is present
in a route, the overall impact of having connections changes from positive to negative. This
seems plausible because the HST is more likely to feed traffic to airlines when the air routes
can take passengers to destinations that are not easily reachable by HST. However, for con-
necting routes that are also accessible via HST, customers are less likely to switch from rail
to air travel because that would be less convenient.

The market (i.e., route) characteristics also affect airlines’ profits. On average, airlines
have lower flow payoffs in longer routes, and enjoy higher profits in routes with large values of
the route unobserved state. The coefficient for the average GDP of a route not significantly
different from zero. This could be because we focus on the main cities in China for which the
GDP is already relatively high when compared to the rest of the country, and also because
the GDP is growing steadily across all cities which may make the GDP less of a factor in
driving airlines’ decisions when compared to other factors.

Finally, there are significant costs associated with entering a route, which vary across
routes, depending on their characteristics. An airline enjoys lower entry costs in routes in
which the airline has more connections, suggesting that there are economies of density from
operating multiple routes which originate in the same airport. Further, the cost of entry
is higher in routes that are regulated by the government. Interestingly the coefficient on
“Exempt” is not significant. This could be because the cost-reduction benefits associated
with being exempt from regulation are already picked up by the coefficient on the number of
connecting routes: airlines that are exempt from regulation are typically those operating out
of their hubs which means they have several connections that originate from their airport
hubs. Lastly, the cost of entry also varies depending on the route unobserved type, the cost
being lower for routes with higher values of the unobserved state.

Taken together, the structural parameter results are consistent with the descriptive ev-
idence and suggest that there are significant network and intermodal transportation effects
which drive airlines’ decisions. Airlines prefer entering routes with more air-route connec-
tions and suffer from business stealing from other airlines that share the same routes with
them. Also, there are both positive and negative spillovers from the HST to the airline
industry. Airlines benefit from being connected to the HST network, but face competition
when serving routes that are also served by the HST. The type of HST and the length of
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a route moderate the magnitude of these spillover effects. Further, entering a route entails
significant costs for airlines.

7.1.1 Model Fit

We compare the predicted with the observed airline network configurations using two differ-
ent metrics. The first metric tries to capture the ability of the model to predict airline route
presence (i.e., whether each route is served by at least one airline), while the second metric
assesses the quality of the model with respect to airline route density (i.e., how many airlines
operate in each route). More specifically, for the first metric we calculate the correlation be-
tween the vector (of length equal to the number of routes) of the expected number of airlines
(capped at one if the expected number is greater than one) predicted by the model and the
observed vector of indicator variables which take the value one if there is at least one airline
present in a given route. We repeat this for each year-end and report the correlations be-
tween the predicted and the observed route-level values. In what concerns the second metric,
we compare the vectors (with length equal to the number of routes) of the observed and the
expected number of airlines serving each of the different routes. The expected numbers used
in both metrics are calculated based on predictions about route presence decisions obtained
from 1, 000 simulations of each airline’s policy functions using the estimated parameters from
the structural estimation. Table 7 present the results. The model does a reasonably good
job at predicting both the route presence and the number of airlines present with average
correlations (across all years in the sample) of 83 and 92 percent for the first and second
metrics, respectively.

=========================
Insert Table 7 about here

=========================

7.2 Interpretation: Profit Decomposition

Because the structural estimates include coefficients associated with the entry of the HST
with opposite signs, to get a better understanding of the structural model results, we decom-
pose the airline flow profits into their different sources. This allows us to better assess the
relative importance of the estimated effects on airlines’ profits and, particularly, the weight
of the HST. To this end, we calculate the average flow profits, across all routes and airlines,
for the year 2015 (the last year in our sample) and decompose them into the effects from
own and competitor’s network presence, the effect from the different types of HST (fast and
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bullet) and the effect of market (i.e., route) characteristics. Table 8 presents the results of
this decomposition.

=========================
Insert Table 8 about here

=========================

Airlines’ own networks have a first-order effect on average airline profits with a magnitude
that outweighs any other negative or positive effects. The magnitude of the market char-
acteristics’ effects is on average negative which is consistent with the fact that most routes
on their own (89% of routes, not tabulated), i.e., without considering an airline’s network
of connections (and the HST network neither), are not profitable. Regarding the effect of
the HST, we aggregate the spillovers from fast and bullet trains into positive and negative
spillovers based on the sign of the coefficients of the structural estimates. While the positive
and negative spillovers from the fast train tend to compensate each other, in the case of
the bullet train, the positive spillovers are, on average, almost twice as large as the negative
spillovers. This is due to the fact that airlines are present in routes in which they benefit
from the positive spillovers associated with the existence of bullet train connections.

Even though this decomposition analysis may facilitate the interpretation of the struc-
tural model estimates, it has an important limitation because it is conditional on the current
airline network configuration. Based on the results of this analysis one may be tempted to
conclude that, overall, the HST has a positive effect on the airline industry. However, to
properly assess the effect of the HST on the airline industry one needs to compare the cur-
rent airline network configuration with the HST (and the profits associated with it) with the
airline network configuration that would result from a scenario in which the HST were not
present and the airlines were allowed to re-optimize their decisions accordingly. Put another
way, the profits that airlines would make in the absence of the HST cannot be calculated
based on the current configuration after simply removing the HST effects. This is because, in
the absence of the HST, the entry and exit decisions of airlines would most likely be different
leading to a different network configuration. In the next section, we conduct counterfactual
policy experiments which allow us to properly quantify the impact of the entry of the HST
on the airline industry.

8 Policy Experiments

We perform counterfactual analyses using the structural model to quantify the effects of
the entry of the HST on the airline industry. Using the model to simulate the endogenous
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equilibrium outcomes is necessary because the evolution of the airline network between 2007

and 2015 depends on the market environment.
First, we simulate the network configurations of the airline carriers in a scenario in which

the HST were not present, and compare the endogenous airlines’ route decisions and profits
to the baseline case in which the HST is introduced. Because the HST has a heterogeneous
effect on the airline industry, we also explore the sources and impact of such heterogeneity.

In another experiment, we simulate an increase in the positive spillover effects between
the HST and the airline industry to explore the possible benefits from services that facilitate
the complementarity between the two modes of transportation. This experiment is motivated
by the government’s goal to increase people’s mobility through a better integration of air
and rail travel, and allows us to assess how government efforts to improve the degree of
connectivity between the two modes of transportation may compensate the negative effects
of the HST on airline entry.

8.1 Implementation

Carrying out policy experiments requires solving for the market equilibria under different
scenarios. This is a particularly complex task in our setting because markets (i.e., routes) are
interconnected. Different from most traditional entry models, airline decisions in each route
depend not only on other players’ decisions in that route but also on the (own and others’)
decisions made in other routes. Thus, any counterfactuals involving changes in exogenous
market characteristics or model parameters will affect each airline’s expectations with respect
to the evolution of the industry’s airline network and consequently its decisions and the
equilibrium of the game. This means that the equilibrium cannot be solved independently
for each route, as in more traditional entry model settings.

To compute the new equilibrium outcomes in the counterfactual scenarios, we proceed
in a manner similar to Aguirregabiria and Ho (2012) and use a forward simulation method
to update the beliefs regarding the transition of the summary statistics which capture in-
formation on the connecting routes. The specific steps for solving for the equilibrium are
described as follows:53

1. Start with some initial belief of the transition probabilities for the summary statistics,
denoted by σ′0.

53There is no guarantee that the equilibrium is unique. However, as discussed in ABBE, the continuous
time framework helps to eliminate simultaneity as a likely source of multiplicity in the equilibrium. In
addition, we solve for the equilibrium using different starting points for the value function as well as for the
airlines’ expectations in what concerns the evolution of the summary statistics, and find that the results
always converge to the same equilibrium.
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2. Given σ′0, obtain the policy functions for each route (unobserved) type.

3. Use the recovered policy functions to simulate the evolution of the entire route network
over the entire time period.

4. With the simulation results from the previous step, update airlines’ beliefs of the
transition probabilities of the summary statistics, denoted by σ′1.

5. If |σ′1 − σ′0 > ε|, replace σ′0 with σ′1 and obtain the policy functions for each route’s
(unobserved) type and repeat from step 3. Here, ε is set to 1e−6.

Once the equilibrium in the counterfactual scenario is found, we use the airlines’ policy
functions to simulate 1, 000 times the evolution of airlines’ route networks over the period
that is covered by the data (i.e., 2007–2015) and then average across the equilibrium outcome
variables of interest (such as entry probabilities and flow profits). We then compare these
averages with those simulated for the baseline scenario, in which the HST is introduced as
observed and the parameters are the ones estimated in the structural model. Note that,
in each simulation, we keep the initial airline network configurations the same as observed.
Further, to ensure a fair comparison, we also solve for the equilibrium in the baseline scenario
using the steps listed above.

8.2 The Impact of the HST on the Airline Industry

To study the endogenous network configurations of the airline carriers in a scenario in which
the HST were not present, we start with the airline network configuration at the beginning
of our sample in 2007 (i.e., before the introduction of the HST) and simulate the economy
forward to the end of our sample in 2015, assuming that the HST were not introduced. We
then compare the resulting airline network outcomes in 2015 with and without the HST. In
addition, we investigate the heterogeneous impact of the HST across different areas of the
country and different types of routes (short vs. long, and overlap vs. connect to HST lines).

Overall Impact of the HST on the Airline Industry

To assess the overall impact of the HST on the airline industry’s route decisions we look
at two measures: the total number of routes that are served by at least one airline, and
the total number of airline-routes, defined as the sum across airlines of the total number of
routes served by each airline. Table 9 presents the results. Column “No HST” corresponds
to the airline network configuration if the HST were not present, while column “Baseline”
corresponds to the baseline scenario in which the HST is present. The table shows that the
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presence of the HST is associated with a 8% lower number of routes served by the airline
industry and with a 14% lower number of airline-routes.

=========================
Insert Table 9 about here

=========================

In addition, we compare the airline industry’s profits in both scenarios. Flow profits are
computed based on the network configuration at the end of year 2015 and reported in annual
terms. Table 9 shows that the lower number of routes served by airlines when the HST is
present is accompanied by 23% lower profits. In addition, the lower overall profit in the
baseline case is driven by a smaller airline network (number of routes served) when compared
to the scenario without HST, as well as with a lower average profit per route.

Taken together, the previous results indicate that, despite the existence of positive
spillovers from the HST on the airline industry, there are stronger negative spillovers such
that the net impact of the introduction of HST on the airline industry is negative.

The positive spillover effects from the HST on the airline industry are substantial, how-
ever. To quantify the impact of the positive spillovers from intermodal connectivity, we
simulate another scenario in which the HST is introduced but the positive spillovers from con-
nectivity are shut down. Specifically, we set the coefficients on the number of fast train/bullet
train line connections to zero, adjust their interaction terms with the presence of HST ac-
cordingly, and then re-solve for the equilibrium to simulate the corresponding airline network
evolution. Column “No positive spill. from HST” in Table 9 reports the results, which we
compare with column “Baseline”. The total number of routes served by the airline industry
is 52% lower, the total airline route presence is 63% lower, and the flow profits are 52%

lower without the positive spillovers. These results imply that the positive spillovers from
intermodal connectivity help to significantly mitigate the negative spillover effects from the
HST and hence prevent the airline network size from being significantly smaller when the
HST is present.

Heterogeneity Patterns

The previous analysis describes the overall effect of the HST on the airline industry. The
effects can vary across different markets, however. In what follows we describe the impact of
the HST on the airline industry across different geographical areas (cities and regions) and
across different types of routes (short vs. long routes, and overlap vs. connect to HST lines).
We then explain the sources of this heterogeneity.

Figure 8 shows a map with the top 20 cities by passenger volume at the end of the year
2015. The black lines represent the HST routes, and each dot represents a city. The size of
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each dot is proportional to the airline-route presence in a given city (defined as the number
of unique airline-route combinations that either start or end at that city) for the baseline
scenario and the color of each dot shows how the airline-route presence in the scenario
without HST compares with the scenario in which the HST is introduced (baseline). We
use warm colors to denote an increase in airline route presence when the HST is introduced
relatively to the scenario without HST, and cold colors to denote a decrease.

The introduction of the HST has affected the airline industry differently across China.
Examining Figure 8 reveals that the cities that experience the largest decrease in airline
route presence are those geographically centrally located (such as Wuhan, Zhengzhou and
Nanjing). In contrast, cities in geographically peripheral areas are less affected, and some of
these, such as Chengdu and Chongqing, even experience an increase in airline route presence
as a result of the introduction of the HST.

=========================
Insert Figure 8 about here

=========================

Table 10 reports in more detail the impact of the HST on airline route presence, for all
regions in China. Air routes in Eastern and Central parts of China are the most negatively
affected by the introduction of the HST. On average, cities from these two regions experience
a decrease of about 20 airline-routes when the HST is introduced. This contrasts with cities
from the western and northeastern parts of China, where there is an increase in the number
of airline routes in each city associated with the introduction of the HST.

=========================
Insert Table 10 about here

=========================

The cities that observed an increase in airline presence have significantly lower average
income level and population density (not tabulated), which suggests that the airline indus-
try’s response to the HST has the potential to help reduce inequality across China. Studies
have established a link between transportation infrastructure and development and poverty
in China (e.g., Démurger 2001, Zou et al. 2008).54 Further, the World Bank’s Regional Eco-
nomic Impact Analysis of High Speed Rail in China report (World Bank 2014) discusses how
the HST can have an impact on less developed regions in China.55 We find that there is a

54Li and DaCosta 2013 provide an overview of this literature.
55See also an article published in 2017 in The Economist which also discusses the benefits of the HST for

the economy in general, and for the poorer cities in particular (http://www.economist.com/news/china/
21714383-and-theres-lot-more-come-it-waste-money-china-has-built-worlds-largest) (last ac-
cessed June 16, 2022).
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potential link between the HST and China’s development through the reorganization of the
airline networks in response to the entry of the HST: airlines avoid head-to-head competition
with the HST and choose to cater to more underserved and undeveloped areas. These areas
become profitable for airlines only due to the complementarities with the HST, thus leading
to airline entry.

Turning to the analysis of the effects across different types of routes, we first classify
routes into six groups depending on whether the HST is present in the route (present and
not present) and on the length of the route (short, medium and long). We then calculate the
average number of airlines in each group for the scenario without HST and compare these
with the corresponding averages in the baseline scenario.

Table 11 displays the results. Consistent with the parameters from the structural esti-
mation, when we compare the scenarios with and without HST, there is a significantly lower
airline presence in the short and medium routes which overlap with the HST. The effect is
especially pronounced for shorter routes which have, on average, 72% lower number of air-
lines when the HST is present compared to when it is not. Long routes, in contrast, tend to
have a higher average number of airlines when the HST is present. Interestingly, the entry of
the HST also has a negative effect (albeit smaller) on the average number of airlines present
in short and medium routes even when these do not overlap with HST. This is driven by the
fact that routes are interconnected so that, when an airline decides not to serve a route, it
makes serving connecting routes less attractive.

=========================
Insert Table 11 about here

=========================

Taken together, the results show there is considerable heterogeneity across cities and
route-types in how the HST impacted the airline industry. Airlines readjusted their net-
work by exiting shorter routes and substituting them for longer routes and routes in more
peripheral regions in China. Airline entry in these routes would not have occurred in the
absence of the HST, which made them profitable for airlines. This highlights a potential
indirect benefit of the HST entry in shifting airlines to more remote and underserved areas
thus improving connectivity among regions and reducing inequality. Different from other
papers that have studied the crowding out effect from public investment (e.g., Berry and
Waldfogel 1999, Sinai and Waldfogel 2005), we find, in addition to crowding out, positive
effects from public investment: network complementarities lead to increased market coverage
transportation-wise.56 Wilson (2021) also finds public competition to provide a significant

56Note that, in addition to the expansion in airline routes to more remote and peripheral areas, the total
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economic benefit to communities in the market for internet service despite the crowding out
effect, but through a different mechanism from ours, namely via preemption through private
investment in new technologies.

Heterogeneity Drivers

To help understand the patterns of reorganization of the airline networks and thus the
sources of heterogeneity in the HST effects, we focus on routes which are the most affected
(in terms of airline presence) by the entry of the HST. Specifically, we look at two groups
with the top 10 routes which have the largest difference (positive or negative, depending on
the group) in the predicted number of airlines between the two scenarios “Baseline” and “No
HST”. Results using a larger number of routes per group, for example 30, are consistent with
those discussed here.

Table 12 compares itemized flow profits for each of the two groups of routes under the
two scenarios. The table also reports the average number of airlines and flow profits for the
two groups. Routes which are the most negatively affected by the HST in terms of airline
presence have on average 2.75 fewer airlines in the “Baseline” than in the “No HST” scenario;
this is consistent with these routes having lower profits on average when the HST is present
compared to when it is not, as reported in the second row of Table 12. Conversely, the routes
which are the most positively affected by the HST have on average 0.83 more airlines in the
“Baseline” than in the “No HST” scenario and, as expected, have higher average profits when
the HST is present.

=========================
Insert Table 12 about here

=========================

Panel A in Table 12 shows that the routes most negatively affected by the HST in terms
of airline presence have a negative competitive effect with its origin in their overlap with the
HST. Such competitive effect represents, on average, 88% of the profit losses of this group
of routes and is five times larger than the positive HST spillover effects that result from
connections to routes served by the HST. Considering that all of the routes with the largest
negative difference in airline presence are short routes (not tabulated), these observations
reflect the fact that airlines are at a disadvantage competing with the HST in relatively
shorter routes. This also explains why cities in the central region of China were the most
affected by airlines’ exit after the entry of the HST. Cities in the East and Central areas

number of (unique) routes served either by train or air is larger when the HST is present, compared to when
it is not: 1, 030 vs. 967 routes respectively (not tabulated).
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of China are usually served by HST, which means that the overlap between HST routes
and airline routes is large. In addition, their central geographical location implies that the
average distance from the cities to other locations is relatively short, which gives the HST
more competitive advantage in terms of travel convenience. Together, these factors make
airline carriers less likely to serve routes that connect these cities when the HST is present.

As for the routes that are the most positively affected by the HST in terms of airline
presence, panel B in Table 12 shows that the low route overlap with the HST together with a
significant level of connectivity with the HST are the main drivers of airline presence. When
the HST enters, routes that seemed less appealing otherwise, become more profitable due to
the connection to other routes that are served by the train. This explains why airlines tend
to relocate to cities in geographically peripheral areas, where the average distance between
cities is large, and there is less overlap with the HST, therefore limiting the negative spillovers
from the HST. Interestingly, there is also a preference for airlines to relocate to routes in
which there is overlap with HST (fast train) as long as these are longer routes – about 70%

of the positive spillovers from the fast train originate from long routes in which the fast train
is present with the remaining 30% being associated with connections to routes served by
this type of train (not tabulated). This is consistent with the existence of market expansion
effects which make airlines want to explore new routes that are now served by the train, as
discussed in section 7.

Finally, Table 12 also reveals that, even though the entry of the HST leads to considerable
exit from airlines, the downsizing in airlines’ own networks is not the main driver of airline
network reconfiguration. The indirect effect of the HST presence on airline’s profits, which
is reflected in the downsizing of airlines’ own networks, has the same magnitude in both the
routes most negatively and the most positively affected by the HST, representing only 2%

and 10% of the profits lost due to the HST’s presence, respectively.

8.3 Improving the Positive Spillovers from the HST

The Chinese government consistently highlights the importance of increasing people’s mo-
bility in order to reduce inequality across the country.57 Better integration of air and train
travel can contribute to this objective by facilitating people’s travel and has been encouraged
by the government.58 While such integration is likely to lead to more airline entry further
enhancing mobility, and despite the government appeals, little has been done so far in an

57According to the 13th five-year-plan (2016 – 2020) Plan: “[We need to] establish sound mechanisms for
the free movement of talent, improve horizontal and vertical social mobility, and encourage the orderly, free
movement of talent between different kinds of organizations and between different regions”.

58Source: http://www.chinanews.com/cj/2017/02-28/8161929.shtml (in Chinese and last accessed on
July 5, 2022)
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effort to integrate air and train transportation in China.
Better integration efforts could mirror what has been done in other countries. For ex-

ample, in Germany, train stations are built closer to airports whenever possible and shuttle
services are offered to connect railway stations and airports, when needed. Also, more cost-
effective services have been implemented successfully by airlines such as Lufthansa including
online single check-in, baggage drop-off directly in the terminal at the long-distance train
station, and automatic rebooking onto the next flight or train in case of delays.

Given the Chinese government’s emphasis on this topic, in this section we conduct a
policy experiment to investigate the impact on the airline industry of an increase in the level
of spillovers from the HST. This exercise allows us to quantify how much airline’s profits
can be affected by improving intermodal transportation, and to identify which cities would
benefit the most from such coordination efforts.

We consider several scenarios in which we increase the value of the structural model coef-
ficients associated with the positive spillovers from the HST on airlines (i.e., the parameters
associated with the variable “number of HST line connections” for both the bullet and the
fast trains) by different levels starting at 2% with 2% increments up to 30% and solve for the
corresponding equilibria. As in the previous policy experiments, for each scenario, we run
1, 000 simulations of the evolution of the airline route networks and compare the resulting
airline route networks at the end of 2015 with those from the baseline scenario when the
HST is present.

Figure 9 shows the impact of the different spillover levels on airline route presence (top
two panels), measured as the total number of routes served and the total number of airline-
routes, and on the airline industry total flow profits (bottom panel). The horizontal lines
represent the levels of airline presence and flow profits in the scenario in which the HST
is not introduced. The figure shows that, as expected, airline presence and profits increase
substantially with the level of spillovers. Also, when the positive spillovers from connecting
to HST lines increase by about 18%, the airline industry’s flow profits match the profits in
the scenario without HST. This increase in spillovers is associated with an increase in profits
(per route and airline) of 10.75% relatively to the baseline scenario (not tabulated), which,
assuming constant marginal costs, corresponds also to a 10.75% increase in the number of
passengers. To put this number in perspective, this corresponds to about 84% of the average
annual growth rate in air traffic volume in China (which was 13% between 2007 and 201559).

59Source: Statistical Bulletin of Civil Aviation Industry Development, published by the Civil Aviation
Administration of China, years 2017, 2012, and 2010.
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=========================
Insert Figure 9 about here

=========================

We also investigate how the impact of improving the integration between train and air
varies across the country. Figure 10 shows a map with the airline route presence for the
top 20 cities by passenger volume. The black lines represent the HST routes, and each dot
represents a city. The size of each dot is proportional to the airline-route presence in a given
city (defined as the number of unique airline-route combinations that either start or end
at that city) for the baseline scenario. The color of each dot shows how the airline-route
presence in the scenario in which the positive spillovers from the HST are increased by 18%

(the level at which the airline industry’s flow profits match the profits in the baseline scenario
without HST) compares with the scenario in which the HST is introduced (baseline). We
use warm colors to denote an increase in airline route presence (and cold colors to denote
a decrease) relatively to the scenario in which the level of spillovers is the one estimated in
the data.

=========================
Insert Figure 10 about here

=========================

Table 13 reports in more detail the impact of the HST on airline route presence, for all
regions in China, assuming the same level of positive spillovers as in Figure 10.

=========================
Insert Table 13 about here

=========================

The impact of an increase in the level of positive spillovers from the HST on the airline
industry is not uniform across the country. As expected, the cities that benefit the most
in terms of airline presence from improving intermodal transportation are those located in
regions where there is a large number of HST connections. This is the case in the Central
region, for which the difference in airline presence per city relative to the baseline scenario is
the largest, followed by the Eastern region. As discussed in the policy experiment in Section
8.2, the cities in these regions are also the ones that are the most negatively affected in terms
of airline presence due to the entry of the HST.

Despite the significant benefits from improved intermodal connectivity in the Central and
Eastern regions, the benefits are not enough to compensate for the entry of HST in these two
regions (the difference in airline presence per city relative to the case without HST presence
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is negative). This is because cities from these areas suffer more from the competition from
the HST due to having a larger proportion of routes which overlap with the HST. In any case,
given that airline service provision in cities from these regions is the most elastic to a change
in spillovers from the HST, and without taking into account other economic considerations,
this makes them important targets for providing intermodal connectivity services.

9 Conclusion

This paper empirically assesses and quantifies the negative and positive spillovers of the
HST network on the airline industry in China, and studies the implications of such spillovers
for firms’ entry decisions (i.e., network configuration choices). We setup and estimate a
structural dynamic oligopoly model of airlines’ decisions which accounts for the network
structure in the data and that allows for multiple entry and exits of airlines into the same
route.

We use a counterfactual exercise to compare the equilibrium airline network decisions with
and without the presence of the HST. Despite the existence of significant positive spillovers
from the HST on the airline industry, the introduction of the HST reduced airlines’ route
presence by about 14% and airline profits by 23%. Further, and even though the overall
net impact of the introduction of HST is negative, there is considerable heterogeneity across
cities and route-types in how the HST impacted the airline industry. Airlines readjusted their
networks by substituting towards longer routes and more peripheral regions in China. This
highlights a potential indirect benefit of the HST entry in shifting airlines to more remote
and underserved areas thus improving connectivity among regions and reducing inequality.

The complexity of the effects of the HST on the airline industry, derived from the interplay
between the positive and negative spillovers which differs across regions, must be taken into
account when planning interventions from the government or airlines such as improvements
in intermodal services.
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Figures and Tables

Figure 1: Airlines in China by Parent Company

This figure shows the logos of the major airline carriers (in terms of market shares) in China (Air China,
China Southern Airlines, China Eastern Airlines, and Hainan Airlines) and their subsidiaries. It also lists
other less significant airlines (labeled “other airlines”). Market shares were calculated using the authors’ data
and are based on the number of domestic flights operated by each airline for the top 70 airports in passenger
volume between 2006 and 2016.
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Figure 2: Evolution of the HST Network

This figure shows the evolution of the high speed train (HST) network in China from 2007 to 2016. Different
colors are used to distinguish between fast train and bullet train routes.
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Figure 3: Travel Time as a Function of Distance by Mode of Transportation

This figure presents the relationship between travel time and travel distance for air travel and rail travel
(bullet train). (Source: “Civil Aviation Big Data Report”, 2016, in Chinese)
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Figure 4: Number of Routes Served by Mode of Transportation

This figure shows the evolution of the number of routes served by airlines only and simultaneously by airlines
and high-speed train (HST) (fast and bullet train) by year. A route is defined as a non-directional city-pair.
A route is served by airline carriers if there exists a direct flight that connects the corresponding city-pair.
A route is served by high-speed trains if a passenger can travel by HST between the cities in the city-pair
without changing trains. The data used is based on our sample for the top 70 airports in passenger volume.
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Figure 5: Airline Route Entry and Exit

This figure shows the evolution of the number of routes that experiencedx entry and exit by year. Entry and
exit are defined independently of the number of entries and exits that occurred in a route. The data used is
based on the authors’ sample for the top 70 airports in passenger volume.
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Figure 6: Average Number of Airlines per Route

This figure shows the evolution of the average number of airlines for different groups of routes. Panel A refers
to short and medium/long routes that overlap with the HST and Panel B corresponds to routes connected or
not to the HST that do not overlap with the HST. Routes are classified as overlapping with (or connecting
to) the HST based on their status at the end of the year 2015.
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Figure 7: Graphical Representation of the Selection of the Control Routes

This figure graphically illustrates the criteria for selecting the set of two control routes per treated route in
the difference-in-difference analysis. Here the treated route AB, with city endpoints A and B, is an air route
that overlaps with HST, and the routes AC and BD are the control routes.

Figure 8: Impact of the HST on the Airline Industry by City

This figure shows a map with the top 20 cities by passenger volume at the end of the year 2015. The black
lines represent the HST routes, and each dot represents a city. The size of each dot is proportional to the
airline-route presence in a given city for the baseline scenario (with HST) and the color of each dot shows
how the airline-route presence in a route in the scenario without HST compares with the baseline scenario.
We use warm colors to denote an increase in the airline-route presence when the HST is introduced relatively
to the scenario without HST, and cold colors to denote a decrease. Airline-route presence in a given city is
defined as the number of unique airline-route combinations that either start or end at that city.
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Figure 9: Impact of Improving the Positive Spillovers from the HST

This figure shows the impact of the effect of changing the value of the structural model coefficients associated
with the positive spillovers from the HST on airlines (i.e., the parameters associated with the variable “number
of HST line connections” for both the bullet and the fast trains) by different levels starting at 2%, with 2%

increments, up to 30%. The top two panels show the impact on airline presence measured as the total
number of routes served and the total number of airline-routes, and the bottom panel shows the impact on
the airline industry total flow profits. The horizontal lines represent the levels of airline presence or of flow
profits in the scenario in which the HST is not introduced.
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Figure 10: Impact of Improving the Positive Spillovers from the HST by City

This figure shows a map with the top 20 cities by passenger volume at the end of the year 2015. The black
lines represent the HST routes and each dot represents a city. The size of each dot is proportional to the
airline-route presence in a given city for the baseline scenario (with HST) and the shadow of each dot shows
how the airline-route presence in a route in the scenario with an 18% improvement in the positive spillovers
from the HST compares with the baseline scenario. Airline-route presence in a given city is defined as the
number of unique airline-route combinations that either start or end at that city.
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Table 1: Summary Statistics, Route Characteristics

This table reports the summary statistics for the route characteristics. A route is defined as a non-directional
city-pair. The data is for the period from 2007 to 2015 (9 years) and includes all flights that operate for at
least one year. The unit of analysis is a route-year combination. There are 2, 278 city-pairs in the data which
makes a total of 20, 502 observations across all years. “Airline present” is an indicator variable that equals
1 if at least one airline is present in a given route and year (even if for part of the year), and 0 otherwise.
“Number of airlines” is the number of airlines in a given route and year that have at least one flight that
operates in that route during that year (even if for only part of the year). “Number of flights” is the number
of unique flights (based on the flight numbers) that operate in a given route and year. “Number of airline
connections" is is the sum across airlines of the number of distinct operating air routes that connect to either
of the route endpoints. “HST present”, “Fast train present”, and “Bullet train present” are indicator variables
that equal 1 if the HST train (either fast or bullet), fast train or the bullet train, respectively, are present in
a given route and year, and 0 otherwise. “Number of HST connections” is the number of HST lines that pass
through one (but not both) of the route endpoints. City-pair characteristics are calculated after averaging
the characteristics of the two cities that constitute the route endpoints.

N Mean Median S.D. Min Max
Airline present 20,502 0.30 0.00 0.46 0.00 1.00
Number of airlines 20,502 0.57 0.00 1.02 0.00 4.00
Number of flights 20,502 1.52 0.00 4.12 0.00 74.00
Number of airline connections 20,502 87.97 78.00 56.16 2.00 318.00
HST present 20,502 0.12 0.00 0.32 0.00 1.00
Fast train present 20,502 0.11 0.00 0.32 0.00 1.00
Bullet train present 20,502 0.03 0.00 0.17 0.00 1.00
Number of HST connections 20,502 0.81 0.50 0.85 0.00 5.50
City-pair average population (Million) 20,502 5.34 4.82 3.40 0.22 24.19
City-pair average GDP (Billion USD) 20,502 55.56 43.05 45.29 0.49 374.57
City-pair average population growth rate 20,502 0.01 0.01 0.02 -0.16 0.23
City-pair average GDP growth rate 20,502 0.15 0.15 0.06 -0.21 0.61
City-pair distance (00 km) 20,502 15.26 13.89 8.71 0.54 44.06
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Table 2: Average Route Characteristics by Year

This table reports the average route characteristics by year. The data includes all flights that operate for at
least one year. There are 2, 278 city-pairs in the data. For the definition of the variables in the table please
refer to Table 1’s note.

2007 2008 2009 2010 2011 2012 2013 2014 2015
Airline present 0.25 0.25 0.26 0.28 0.29 0.31 0.34 0.35 0.37
Number of airlines 0.44 0.47 0.50 0.53 0.56 0.60 0.64 0.67 0.70
Number of flights 1.06 1.11 1.26 1.39 1.52 1.63 1.78 1.91 2.02
Number of airline connections 65.01 69.07 75.04 80.43 87.50 93.29 101.17 106.33 113.86
HST present 0.07 0.07 0.08 0.09 0.10 0.11 0.12 0.19 0.21
Fast train present 0.07 0.07 0.08 0.09 0.10 0.10 0.11 0.19 0.21
Bullet train present 0.00 0.00 0.00 0.00 0.02 0.02 0.07 0.07 0.10
Number of HST connections 0.26 0.31 0.40 0.65 0.86 0.89 1.11 1.23 1.54
City-pair average population (Million) 5.13 5.19 5.22 5.30 5.36 5.40 5.43 5.49 5.55
City-pair average GDP (Billion USD) 30.00 35.52 40.14 47.50 56.52 63.19 69.59 75.72 81.84
Observations 2,278 2,278 2,278 2,278 2,278 2,278 2,278 2,278 2,278

Table 3: Airline and High Speed Train Presence by Quantiles of Route Length

This table reports the mean values of select route characteristics for short, medium and long distance routes.
Short routes have less than 600km in length, medium routes between 600km and 1200km and long routes
more than 1200km. The unit of analysis is a year-route combination. The total number of observations is
20, 502, which is given by the number of routes (2, 278) times the number of years (9) in the data. “City-pair
distance” is defined as the distance between the city-pair that constitute the endpoints of a route. “Number of
flights” is the number of unique flights (based on the flight numbers) that operate in a given route and year.
“Number of entries” in a given route and year is the number of flights (unique flight numbers) that started
operating in that year (and which were not in operation before) and were in operation for at least one year
after entry. “Number of exits” in a given route and year refers to the number of flights that ceased operations
in that year and route (after having been in operation for longer than one year). “Fast train present” and
“bullet train present” are indicator variables that equal 1 if fast train or bullet train, respectively, are present
in a given route and year (even if for part of the year), and 0 otherwise.

Short Medium Long
City-pair distance (00 km) 3.86 9.15 20.61
Number of flights 1.98 2.51 0.96
Number of entries 0.15 0.19 0.10
Number of exits 0.14 0.14 0.07
Fast train present 0.32 0.18 0.04
Bullet train present 0.10 0.05 0.01
Observations 2,682 5,643 12,177
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Table 4: Probability of Entry in a Route

This table reports the marginal effect estimates from a probit regression of airline entry in a route in a
particular year as a function of whether an airline operates in none, one or both endpoints of that route in
the previous year. Year and airline fixed effects are included. The excluded category refers to observations
in which an airline does not serve either endpoint airport at any point in time during the previous calendar
year. Marginal effects are evaluated at the mean of all other variables. Robust standard errors are reported
in parentheses. (***), (**) and (*) denote statistical significance at the 1%, 5% and 10% level, respectively.

Airline operates in one endpoint airport in the previous year 0.0283***
(0.0028)

Airline operates in both endpoint airports in the previous year 0.1115***
(0.0028)

N 64,364
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Table 5: Determinants of Airline Entry

This table reports the results for the difference-in-difference regressions. The dependent variable in columns
(1) through (4) is the number of airlines operating in a given route. The unit of analysis is a year-route
combination. “HST” is an indicator variable that equals 1 if the HST is present in a given route and year
(even if for part of the year), and 0 otherwise. “No. of HST connections” is the number of HST lines that
pass through one (but not both) of the route endpoints. “No. of airline connections” is the number of distinct
operating air routes that connect to either of the route endpoints. “Average GDP” is the average of the GDP
(in billions of US dollars) for a route’s endpoints. We categorize the routes into three groups in terms of
route length: short, medium and long, using 600km and 1200km as cutoff points. The indicator variables
“Medium Distance” and “Long Distance” correspond to the last two groups. Whenever route-fixed effects
are included in the model, the route-specific covariates that do not change over time (i.e., route length)
are naturally not identified (only their interaction with other covariates that change over time is identified).
Robust and clustered (at the route level) standard errors are reported in parentheses. (***), (**) and (*)
denote statistical significance at the 1%, 5% and 10% level, respectively.

(1) (2) (3) (4)
HST (Yes/No) −0.697∗∗∗ −0.686∗∗∗ −0.172∗∗ −0.190∗∗

(0.089) (0.089) (0.070) (0.086)
No. of HST connections −0.024∗∗ −0.003 0.030∗∗∗ 0.071∗∗∗

(0.011) (0.012) (0.008) (0.017)
HST × No. of HST connections −0.013 −0.013 −0.065∗∗∗ −0.049∗∗∗

(0.017) (0.017) (0.013) (0.019)
HST × Medium Distance 1.110∗∗∗ 1.106∗∗∗ 0.498∗∗∗ 0.516∗∗∗

(0.110) (0.111) (0.082) (0.088)
HST × Long Distance 1.344∗∗∗ 1.340∗∗∗ 0.621∗∗∗ 0.632∗∗∗

(0.119) (0.120) (0.100) (0.112)
No. of airline connections 0.014∗∗∗ 0.014∗∗∗ 0.010∗∗∗ 0.010∗∗∗

(0.001) (0.001) (0.001) (0.002)
Average GDP −0.002 0.001 0.010∗ −0.003

(0.006) (0.006) (0.006) (0.012)
Medium Distance −0.021 −0.017

(0.059) (0.060)
Long Distance −0.391∗∗∗ −0.380∗∗∗

(0.054) (0.055)
Year fixed effects No Yes Yes No
Route fixed effects No No Yes Yes
Group fixed effects No No No No
Year-group fixed effects No No No Yes
Observations 20,502 20,502 20,502 7,884
R2 0.533 0.537 0.901 0.926
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Table 6: Structural Model Estimation Results

This table reports the estimation results for the structural model. For details on the definition of the variables
in the table please refer to Section 6.4. Standard errors are calculated via bootstrapping. (***), (**) and
(*) denote statistical significance at the 1%, 5% and 10% level, respectively.

Coef. s.e.
Flow Payoffs’ Parameters

No. of own routes connected 0.20∗∗∗ 0.01
Strategic Effects No. of competitors −0.12** 0.06

No. of competitors’ routes connected 0.02** 0.01
Bullet Train (Y/N) −0.32** 0.12
Bullet Train × Medium distance 0.22 0.15
Bullet Train × Long distance 0.15 0.13
No. of Bullet Train connections 0.15∗∗∗ 0.05

Impact of HST Bullet Train × No. of Bullet train line connections −0.27∗∗∗ 0.09
Fast Train (Y/N) −0.53∗∗∗ 0.10
Fast Train × Medium distance 0.42∗∗∗ 0.10
Fast Train × Long distance 0.74∗∗∗ 0.13
No. of Fast Train connections 0.10∗∗∗ 0.03
Fast Train × No. of Fast Train line connections −0.25∗∗∗ 0.06
Average GDP −0.01 0.02
Medium distance −0.16∗∗∗ 0.05

Market Characteristics Long distance −0.27∗∗∗ 0.05
Unobserved Type 0.62∗∗∗ 0.12
Constant 0.07 0.15

Entry Costs’ Parameters
Constant −4.63∗∗∗ 0.21
Unobserved Type 1.36∗∗∗ 0.19
Regulated −1.42∗∗∗ 0.29
Exempt 0.22 0.31
No. of own routes connected 0.27∗∗∗ 0.06
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Table 7: Goodness of Fit

This table reports the structural model’s goodness of fit. Columns (1) and (2) report correlations between
the predicted and observed values of two metrics, Route Presence and Route Density, respectively. Route
Presence is measured as a vector of indicator variables which take the value one if there is at least one airline
present in a given route (at the end of each year). Route Density is measured as a vector with the number of
airlines present across the different routes. Predictions are obtained by averaging route presence and density
across 1, 000 model simulations (using different draws of the error terms) of each airline’s policy function
using the estimated parameters from the structural estimation.

Correlations between Model Predictions
and Sample Observations

Year (1) (2)
2007 0.923 0.953
2008 0.865 0.937
2009 0.825 0.919
2010 0.811 0.918
2011 0.821 0.916
2012 0.812 0.906
2013 0.806 0.907
2014 0.804 0.906
2015 0.815 0.905

Table 8: Profit Decomposition

This table shows the decomposition of airline flow profits into their different sources using the structural
model estimates and the observed data. We report the average flow profits, across all routes and airlines,
for the year of 2015. Average profits are calculated using only routes in which airlines are present (1, 388
routes).

Source Profit
Own Network 0.661
Competitors’ Network −0.001
Negative Spillover–Fast Train −0.117
Negative Spillover–Bullet Train −0.065
Positive Spillover–Fast Train 0.114
Positive Spillover–Bullet Train 0.109
Market Characteristics −0.399
Constant 0.067
Total 0.369
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Table 9: Overall Impact of the HST on the Airline Industry

This table presents the airline presence and flow profits under different simulated scenarios. Column “No
HST” corresponds to the airline network configuration under the scenario where the HST were not present,
column “Baseline” corresponds to the baseline scenario in which the HST is present, and column “No positive
spill. from HST” corresponds to the scenario where HST is introduced but there are no positive spillovers
from the HST. “Route presence" is defined as the total number of routes that are served by at least one
airline. “Airline-Route presence" is defined as the sum across airlines of the total number of routes served
by each airline. “Flow profits" are the total flow profits for the airline industry and are computed based on
the network configuration at the end of year 2015 and reported in annual terms. The numbers reported are
obtained by averaging across 1, 000 simulations for each scenario at the end of 2015. Specifically, “Route
Presence" is calculated by counting, for each simulation, the number of unique routes served by at least one
airline, and then taking the average across simulations. “Airline-Route presence" is calculated by calculating
the total number of airlines across routes for each simulation, and then taking the average across simulations.
“Flow profits" are calculated by taking the average across simulations of the total industry (taken across
routes and airlines) flow profits.

No HST Baseline No positive spill. from HST
Route presence 967 894 427
Airline-Route presence 2083 1785 654
Flow profits 835 639 306
Average flow profit per airline-route 0.40 0.36 0.47

Table 10: Impact of the HST by Region

This table presents the impact of HST on the airline industry for different regions in China defined according
to the National Bureau of Statistics of China. Airline-Route Presence is defined as the sum across airlines
of the total expected number of routes served by each airline in a given region. The numbers reported are
obtained by averaging across 1, 000 simulations for each scenario at the end of 2015.

Northeast North Northwest East Central South Southwest
No. of Cities 5 8 9 20 5 11 10
Average No. of HST Lines per City 1.8 2.3 0.7 2.3 3.0 1.9 0.7
Average Route Length (00 km) 18.6 14.4 20.6 12.9 11.3 15.2 16.2
Route Overlap with HST (%) 15.5% 19.4% 5.3% 34.0% 36.7% 18.3% 6.1%
Airline-Route Presence (Baseline) 220.6 450.0 339.6 1055.7 367.5 676.8 460.6
Airline-Route Presence (No HST) 230.4 543.2 333.0 1463.1 468.6 697.2 431.6
Difference -9.7 -93.1 6.6 -407.4 -101.0 -20.4 29.0
Difference per City -1.9 -11.6 0.7 -20.4 -20.2 -1.9 2.9
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Table 11: Impact of the HST by Route Type

This table presents the impact of HST on airline presence across different types of routes. We classify routes
into six groups depending on whether the HST is present in the route (present and not present) and on the
length of the route (short, medium and long). The numbers reported are obtained by averaging across 1, 000
simulations for each scenario at the end of 2015.

Route type Average No. Airlines
Length HST N Baseline No HST Difference Difference (%)
Short No 150 0.89 1.25 -0.35 -28.4%
Short Yes 148 0.64 2.34 -1.70 -72.6%
Medium No 424 0.96 0.98 -0.03 -2.6%
Medium Yes 203 2.01 2.50 -0.49 -19.5%
Long No 1,233 0.40 0.33 0.07 19.9%
Long Yes 120 2.09 1.80 0.29 16.0%
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Table 12: Routes Most Affected by the HST

This table reports simulated airline presence and profit decomposition for the two groups of top 10 routes
which have the largest difference in the predicted number of airlines between the two scenarios “Baseline”
and “No HST”. Panel A reports results for the routes which are the most negatively affected by the HST
in terms of airline presence, and Panel B for the routes which are the most positively affected by the HST.
“Profit" refers to the average profits calculated across routes (10 routes) and airlines (4 airlines). The profit
decomposition items are defined based on the structural model flow payoff variables listed in Table 6. “Own
network” refers to the effect associated with the number of own routes connected. “Competitors’ Network”
includes the effects from the number of competitors and competitors’ connections. The classification of the
effects associated with the impact of the HST into “Negative” and “Positive” Spillover effects is done based
on the sign of the estimated coefficients from the structural model. “Market characteristics” includes the
effects associated with the constant term of profits, GDP, and the unobserved market type. The numbers
reported are obtained by averaging across 1, 000 simulations for each scenario at the end of 2015.

Panel A: Routes most negatively affected by the HST
Baseline No HST Difference

Average No. of Airlines 0.41 3.15 -2.75

Profit -0.39 0.53 -0.92

Profit Decomposition

Gains/Losses Fraction of Total Gains/Losses Fraction of Total Gains/Losses Fraction of Total
Gains (Losses) Gains (Losses) Gains (Losses)

Own Network 0.76 62% 0.79 100% -0.04 (2%)
Competitors’ Network 0.18 15% -0.06 (24%) 0.25 46%
Negative Spillovers from HST -1.41 (88%) 0.00 0% -1.41 (98%)
Positive Spillovers from HST 0.29 23% 0.00 0% 0.29 54%
Market Characteristics -0.20 (12%) -0.20 (76%) 0 0%

Total Gains 1.23 0.79 0.53
Total Losses -1.61 -0.26 -1.45

Panel B: Routes most positively affected by the HST
Baseline No HST Difference

Average No. of Airlines 2.38 1.54 0.83

Profit 0.46 0.24 0.22

Profit Decomposition

Gains/Losses Fraction of Total Gains/Losses Fraction of Total Gains/Losses Fraction of Total
Gains (Losses) Gains (Losses) Gains (Losses)

Own Network 0.73 54% 0.77 91% -0.04 (10%)
Competitors’ Network -0.01 (1%) 0.08 9% -0.09 (23%)
Negative Spillovers from HST -0.26 (30%) 0 0% -0.26 (67%)
Positive Spillovers from HST 0.61 46% 0 0% 0.61 100%
Market Characteristics -0.61 (69%) -0.61 (100%) 0.00 0%

Total Gains 1.34 0.85 0.61
Total Losses -0.88 -0.61 -0.39
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Table 13: Impact of Improving the Positive Spillovers from the HST by Region

This table presents the impact of an improvement of positive spillovers from HST (18%) on airline route
presence for different regions in China. The last row in the table compares the figures of the scenario with
improved spillovers with the scenario without HST which is reported in Table 10. The numbers reported
are obtained by averaging across 1, 000 simulations for each scenario at the end of 2015. For the definition
of the variables in the table please refer to Table 10’s note.

Area Northeast North Northwest East Central South Southwest

No. of Cities 5 8 9 20 5 11 10
Average No. HST Lines per City 1.8 2.3 0.7 2.3 3.0 1.9 0.7
Route Overlap with HST (%) 15.5% 19.4% 5.3% 34.0% 36.7% 18.3% 6.1%
Airline-Route Presence (Improved Spill.) 276.4 540.5 394.2 1285.8 434.7 791.5 528.3
Airline-Route Presence (Baseline) 220.6 450.0 339.6 1055.7 367.5 676.8 460.6
Difference 55.8 90.4 54.7 230.1 67.2 114.7 67.8
Difference per City 11.2 11.3 6.1 11.5 13.4 10.4 6.8
Difference relative to No HST per City 9.2 -0.3 6.8 -8.9 -6.8 8.6 9.7
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Appendix

A Robustness Checks for Difference-in-Differences Analysis

Here we check the robustness of the results from Table 5 by carrying out three additional
analyses. Specifically, in Table A.1, we report the estimation results at the airline-route-
month level (as opposed to at the airline-route year, as in the main specification) and restrict
the set of treated routes such that we only include data for treated routes for one month
before the entry of the HST and one month after the introduction of the HST.

Table A.1: Determinants of Airline Entry

(1) (2) (3) (4)
HST (Yes/No) −0.457∗∗∗ −0.466∗∗∗ −0.081∗∗ −0.070∗

(0.075) (0.075) (0.034) (0.042)
No. of HST connections −0.017∗ 0.005 0.026∗∗∗ 0.047∗∗∗

(0.010) (0.012) (0.006) (0.013)
HST × No. of HST line connections 0.050∗∗ 0.059∗∗∗ −0.023∗ −0.027∗∗

(0.022) (0.022) (0.013) (0.013)
HST × Medium Distance 0.786∗∗∗ 0.787∗∗∗ 0.215∗∗∗ 0.314∗∗∗

(0.091) (0.091) (0.044) (0.049)
HST × Long Distance 0.862∗∗∗ 0.870∗∗∗ 0.284∗∗∗ 0.243∗∗∗

(0.100) (0.100) (0.056) (0.069)
No. of airline connections 0.014∗∗∗ 0.014∗∗∗ 0.010∗∗∗ 0.012∗∗∗

(0.001) (0.001) (0.001) (0.002)
Average GDP −0.003 −0.001 0.014∗∗∗ 0.003

(0.006) (0.006) (0.005) (0.011)
Medium Distance −0.010 −0.006

(0.056) (0.056)
Long Distance −0.354∗∗∗ −0.343∗∗∗

(0.051) (0.052)
Year fixed effects No Yes Yes No
Route fixed effects No No Yes Yes
Group fixed effects No No No No
Year-group fixed effects No No No Yes
Observations 237,345 237,345 237,345 61,653
R2 0.465 0.470 0.887 0.143

In Table A.2 we show estimation results when the dependent variable is the log of the
number of flights (as opposed to number of airlines, as in the main analysis).
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Table A.2: Determinants of Airline Entry

(1) (2) (3) (4)
HST (Yes/No) −0.256∗∗∗ −0.251∗∗∗ −0.044 −0.114∗∗

(0.029) (0.029) (0.028) (0.048)
No. of HST connections −0.018∗∗∗ −0.010∗∗∗ 0.007∗ 0.091∗∗∗

(0.004) (0.004) (0.004) (0.017)
HST × No. of HST connections 0.021∗∗∗ 0.021∗∗∗ −0.021∗∗∗ −0.081∗∗∗

(0.008) (0.008) (0.007) (0.018)
HST × Medium Distance 0.311∗∗∗ 0.309∗∗∗ 0.120∗∗∗ 0.316∗∗∗

(0.038) (0.038) (0.040) (0.047)
HST × Long Distance 0.418∗∗∗ 0.416∗∗∗ 0.179∗∗∗ 0.449∗∗∗

(0.052) (0.052) (0.054) (0.057)
No. of airline connections 0.003∗∗∗ 0.003∗∗∗ 0.002∗∗∗ 0.012∗∗∗

(0.000) (0.000) (0.000) (0.002)
Average GDP 0.009∗∗∗ 0.010∗∗∗ 0.014∗∗∗ 0.264

(0.002) (0.002) (0.003) (0.167)
Medium Distance −0.028 −0.026

(0.017) (0.017)
Long Distance −0.087∗∗∗ −0.083∗∗∗

(0.016) (0.016)
Year fixed effects No Yes Yes No
Route fixed effects No No Yes Yes
Group fixed effects No No No No
Year-group fixed effects No No No Yes
Observations 20,502 20,502 20,502 7,884
R2 0.308 0.313 0.588 0.963
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In Table A.3, we check the robustness of our results with respect to our data sample
definition and re-run our analysis using all flights that operate longer than three months
(as opposed to including only those that operate longer than one year, as in the main
specification).

Table A.3: Determinants of Airline Entry

(1) (2) (3) (4)
HST (Yes/No) −0.780∗∗∗ −0.768∗∗∗ −0.204∗∗∗ −0.181∗∗

(0.097) (0.098) (0.076) (0.089)
No. of HST connections −0.015 0.008 0.039∗∗∗ 0.079∗∗∗

(0.012) (0.013) (0.008) (0.018)
HST × No. of HST line connections −0.039∗∗ −0.039∗∗ −0.077∗∗∗ −0.056∗∗∗

(0.018) (0.018) (0.013) (0.020)
HST × Medium Distance 1.238∗∗∗ 1.234∗∗∗ 0.522∗∗∗ 0.553∗∗∗

(0.119) (0.120) (0.089) (0.094)
HST × Long Distance 1.559∗∗∗ 1.555∗∗∗ 0.687∗∗∗ 0.603∗∗∗

(0.121) (0.122) (0.106) (0.120)
No. of airline connections 0.014∗∗∗ 0.014∗∗∗ 0.009∗∗∗ 0.011∗∗∗

(0.000) (0.000) (0.001) (0.002)
Average GDP −0.003 −0.000 0.008 −0.006

(0.006) (0.006) (0.006) (0.013)
Medium Distance −0.041 −0.036

(0.065) (0.066)
Long Distance −0.470∗∗∗ −0.459∗∗∗

(0.060) (0.061)
Year fixed effects No Yes Yes No
Route fixed effects No No Yes Yes
Group fixed effects No No No No
Year-group fixed effects No No No Yes
Observations 20,502 20,502 20,502 7,884
R2 0.539 0.543 0.893 0.929

For each analysis, we report the results for the same specifications as in Table 5 for ease
of comparison. The definitions for the variables used in the tables can be found in Table 5’s
note. Robust and clustered (at the route level) standard errors are reported in parentheses.
(***), (**) and (*) denote statistical significance at the 1%, 5% and 10% level, respectively.
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B Robustness Checks for Structural Model Results

Here we check the robustness of the results from Table 6 by carrying out two additional
analyses. Specifically, in Table B.1, we check the robustness of our results with respect to
our data sample definition and re-run our analysis using all flights that operate longer than
three months (as opposed to including only those that operate longer than one year, as in
the main specification). In Table B.2 we report the estimation results for the case where we
allow each airline to have both different baseline flow payoffs and different entry costs (note
that, in this last case, compared to the main specification, we do not include the variable
“exempt” because otherwise the state space becomes unmanageable). The definitions for the
variables used in the tables can be found in Table 6’s note. Standard errors are calculated
via bootstrapping. (***), (**) and (*) denote statistical significance at the 1%, 5% and 10%
level, respectively.

Table B.1: Structural Model Estimation Results

Coef. s.e.
Flow Payoffs’ Parameters

No. of own routes connected 0.58∗∗∗ 0.04
Strategic Effects No. of competitors −0.82∗∗∗ 0.18

No. of competitors’ routes connected 0.09∗∗∗ 0.02
Bullet Train present (Y/N) −0.74∗∗∗ 0.20
Bullet Train × Medium distance 0.51** 0.21
Bullet Train × Long distance 0.73∗∗∗ 0.20
No. of Bullet Train line connections 0.17∗∗∗ 0.05

Impact of HST Bullet Train × No. of Bullet train line connections −0.57∗∗∗ 0.11
Fast Train present (Y/N) −1.31∗∗∗ 0.24
Fast Train × Medium distance 1.27∗∗∗ 0.22
Fast Train × Long distance 2.06∗∗∗ 0.27
No. of Fast Train line connections 0.26∗∗∗ 0.05
Fast Train × No. of Fast Train line connections −0.54∗∗∗ 0.08
GDP 0.08 0.06
Medium distance −0.56∗∗∗ 0.21

Market Characteristics Long distance −1.18∗∗∗ 0.27
Unobserved Type 1.84∗∗∗ 0.27
Constant −1.1 ∗ ∗∗ 0.28

Entry Costs’ Parameters
Entry Cost −2.48∗∗∗ 0.18
Unobserved Type 0.75** 0.35

Entry Costs Regulated −1.44∗∗∗ 0.25
No. of own routes connected 0.07* 0.04
Exempt 0.20 0.28
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Table B.2: Structural Model Estimation Results

Coef. s.e.
Flow Payoffs’ Parameters

No. of own routes connected 0.44∗∗∗ 0.11
Strategic Effects No. of competitors −0.88∗∗∗ 0.33

No. of competitors’ routes connected 0.11 ∗ ∗ 0.04
Bullet Train present (Y/N) −0.90∗∗∗ 0.31
Bullet Train × Medium distance 0.56* 0.30
Bullet Train × Long distance 0.95∗∗∗ 0.34
No. of Bullet Train line connections 0.19** 0.08

Impact of HST Bullet Train × No. of Bullet train line connections −0.37** 0.15
Fast Train present (Y/N) −1.36∗∗∗ 0.29
Fast Train × Medium distance 1.26∗∗∗ 0.26
Fast Train × Long distance 2.01∗∗∗ 0.43
No. of Fast Train line connections 0.23∗∗∗ 0.06
Fast Train × No. of Fast Train line connections −0.34∗∗∗ 0.11
GDP 0.16** 0.07
Medium distance −0.55** 0.26
Long distance −1.14∗∗∗ 0.34

Market Characteristics Unobserved Type 1.81∗∗∗ 0.31
Constant −1.27∗∗∗ 0.48
CZ −0.05 0.04
MU 0.002 0.06
HU −0.08 0.06

Entry Costs’ Parameters
Entry Cost −3.10∗∗∗ 0.71
Entry Cost × CZ −0.33** 0.16
Entry Cost × MU 0.14 0.11

Entry Costs Entry Cost × HU 0.53∗∗∗ 0.19
Unobserved Type 0.68∗∗∗ 0.22
Regulated −1.67∗∗∗ 0.45
No. of own routes connected 0.41 0.41
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